\[\boxed{\text{73\ (73).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ 4x = d\]
\[x = \frac{d}{4}\]
\[при\ d < 0\ корень\ будет\ \]
\[больше\ d,\ так\ как\ любое\ d < 0\ \]
\[будет\ меньше,чем\ \frac{d}{4}.\]
\[Ответ:при\ d < 0.\]
\[2)\ \frac{1}{5}x = d\]
\[x = 5d\]
\[при\ d > 0\ корень\ всегда\ будет\ \]
\[больше\ d,\ так\ как\ любое\ d > 0\ \]
\[будет\ меньше,\ чем\ 5d.\]
\[Ответ:при\ d > 0.\]
\[\boxed{\text{73.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[a\ :b = \frac{1}{2}\ :\frac{1}{3} = 3\ :2\]
\[a = 3k;\ \ b = 2k;\]
\[b\ :c = 5\ :3\]
\[b = 5m;\ \ c = 3m;\]
\[b\ :c = 5\ :3 = 2k\ :\frac{3}{5} \cdot 2k = \frac{6k}{5}\]
\[b = 2k;\ \ c = \frac{3}{5} \cdot 2k = \frac{6k}{5}\]
\[3k + 2k + \frac{6k}{5} = 5k + \frac{6k}{5} =\]
\[= \frac{25k + 6k}{5} = \frac{31k}{5}\]
\[\frac{31k}{5} = 93\]
\[k = \frac{93 \cdot 5}{31} = 15;\]
\[a = 3k = 3 \cdot 15 = 45;\]
\[b = 2k = 2 \cdot 15 = 30;\]
\[c = \frac{6k}{5} = \frac{6 \cdot 15}{5} = 6 \cdot 3 = 18.\]