\[\boxed{\text{693\ (693).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x^{12} - y^{12} = \left( x^{6} - y^{6} \right)\left( x^{6} + y^{6} \right) =\]
\[= (x^{4} - y^{4})(x^{8} + x^{4}y^{4} + y^{8})\]
\[\boxed{\text{693.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (a + 8)^{2} = a^{2} + 16a + 64\]
\[2)\ (b - 2)^{2} = b^{2} - 4b + 4\]
\[3)\ (7 + c)^{2} = 49 + 14c + c^{2}\]
\[4)\ (4 + k)^{2} = 16 + 8k + k^{2}\]
\[5)\ (6 - d)^{2} = 36 - 12d + d^{2}\]
\[6)\ (d - 6)^{2} = d^{2} - 12d + 36\ \]