\[\boxed{\text{629\ (629).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ b² - 30b + 225 = (b - 15)²\]
\[при\ b = 6 \Longrightarrow (6 - 15)^{2} =\]
\[= ( - 9)^{2} = 81\]
\[2)\ 100a² + 60\text{ab} + 9b² =\]
\[= (10a + 3b)²\]
\[при\ \ a = 0,8;b = - 3 \Longrightarrow\]
\[\Longrightarrow (10 \cdot 0,8 - 3 \cdot 3)^{2} =\]
\[= (8 - 9)^{2} = 1\]
\[\boxed{\text{629.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ a(a - 2)(a + 2) =\]
\[= a\left( a^{2} - 4 \right) = a^{3} - 4a\]
\[2) - 3 \cdot (x + 3)(x - 3) =\]
\[= - 3 \cdot \left( x^{2} - 9 \right) = - 3x^{2} + 27\]
\[3)\ 7b^{2}(b + 4)(b - 4) =\]
\[= 7b^{2}\left( 16 - b^{2} \right) = 112b^{2} - 7b^{4}\]
\[4)\ (c - d)(c + d)\left( c^{2} + d^{2} \right) =\]
\[= \left( c^{2} - d^{2} \right)\left( c^{2} + d^{2} \right) = c^{4} - d^{4}\]
\[5)\ (2a - 1)(2a + 1)\left( 4a^{2} + 1 \right) =\]
\[= \left( 4a^{2} - 1 \right)\left( 4a^{2} + 1 \right) =\]
\[= 16a^{4} - 1\]
\[6)\ \left( c^{3} - 5 \right)\left( c^{3} + 5 \right)\left( c^{6} + 25 \right) =\]
\[= \left( c^{6} - 25 \right)\left( c^{6} + 25 \right) =\]
\[= c^{12} - 625\]