\[\boxed{\text{602\ (602).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ число\ (2n + 1) -\]
\[нечетное.\]
\[\frac{(2n + 1)^{2}}{8} = \frac{4n^{2} + 4n + 1}{8} =\]
\[= \frac{4n(n + 1) + 1}{8};\]
\[так\ как\ n\ и\ (n + 1)\ \]
\[последовательные\ числа,\ то\ \]
\[один\ из\ множителей\ делится\ \]
\[на\ 2;но\ есть\ еще\ множитель\ 4.\]
\[Значит,\ выражение\ 4n(n + 1)\ \]
\[делится\ на\ 8,\ а\ остаток\ \]
\[равен\ 1.\]
\[Ответ:\ \ 1.\]
\[\boxed{\text{602.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ x^{2} + 8x + 12 =\]
\[= x^{2} + 2x + 6x + 12 =\]
\[= x \cdot (x + 2) + 6 \cdot (x + 2) =\]
\[= (x + 2) \cdot (x + 6).\]
\[2)\ x^{2} - 5x + 4 =\]
\[= x^{2} - 4x - x + 4 =\]
\[= x \cdot (x - 1) - 4 \cdot (x - 1) =\]
\[= (x - 1) \cdot (x - 4).\]
\[3)\ x^{2} + 7x - 8 =\]
\[= x^{2} + 8x - x - 8 =\]
\[= x \cdot (x - 1) + 8 \cdot (x - 1) =\]
\[= (x - 1) \cdot (x + 8).\]
\[4)\ x^{2} - 4x - 5 =\]
\[= x^{2} - 5x + x - 5 =\]
\[= x \cdot (x + 1) - 5 \cdot (x + 1) =\]
\[= (x + 1) \cdot (x - 5)\text{.\ }\]