\[\boxed{\text{582\ (582).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \left( 0,02p^{3}k + 20p^{2}k^{4} \right)^{2} =\]
\[2)\ \left( 1\frac{1}{6}mn - \frac{4}{21}m^{2}n^{5} \right)^{2} =\]
\[= \left( \frac{7}{6}mn - \frac{4}{21}m^{2}n^{5} \right)^{2} =\]
\[3) - 15 \cdot \left( \frac{1}{3}a - \frac{1}{5}b \right)^{2} =\]
\[= - \frac{5}{3}a^{2} + 2ab - \frac{3}{5}b^{2} =\]
\[= - 1\frac{2}{3}a^{2} + 2ab - \frac{3}{5}b^{2}\]
\[4)\ 7x\left( x^{3} - 2x \right)^{2} =\]
\[= 7x\left( x^{6} - 4x^{4} + 4x^{2} \right) =\]
\[= \ 7x^{7} - 28x^{5} + 28x^{3}\]
\[5)\ (5y - 2)^{2}(2y + 1) =\]
\[= \left( 25y^{2} - 20y + 4 \right)(2y + 1) =\]
\[= 50y^{3} - 15y^{2} - 12y + 4\]
\[6)\ (10p - k)^{2}(10p + k)^{2} =\]
\[= \left( (10p - k)(10p + k) \right)^{2} =\]
\[= \left( 100p^{2} - k^{2} \right)^{2} =\]
\[= 10\ {000p}^{4} - 200p^{2}k^{2} + k^{4}\]