\[\boxed{\text{581\ (581).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ 6 \cdot (1 - 2c)^{2} =\]
\[= 6 \cdot \left( 1 - 4c + 4c^{2} \right) =\]
\[= 6 - 24c + 24c^{2}\]
\[2) - 12 \cdot \left( x + \frac{1}{3}y \right)^{2} =\]
\[= - 12 \cdot \left( x^{2} + \frac{2}{3}xy + \frac{1}{9}y^{2} \right) =\]
\[= - 12x^{2} - 8xy - \frac{4}{3}y^{2}\]
\[3)\ a(a - 6b)^{2} =\]
\[= a\left( a^{2} - 12ab + 36b^{2} \right) =\]
\[= a^{3} - 12a^{2}b + 36ab^{2}\]
\[4)\ 5b\left( b^{2} + 7b \right)^{2} =\]
\[= 5b\left( b^{4} + 14b^{3} + 49b^{2} \right) =\]
\[= 5b^{5} + 70b^{4} + 245b^{3}\]
\[5)\ (a + 3)(a - 4)^{2} =\]
\[= (a + 3)\left( a^{2} - 8a + 16 \right) =\]
\[= \ a^{3} - 5a^{2} - 8a + 48\]
\[6)\ (2x + 4)^{2}(x - 8) =\]
\[= \left( 4x^{2} + 16x + 16 \right)(x - 8) =\]
\[= 4x^{3} - 16x^{2} - 112x - 128\]
\[7)\ (a - 5)^{2}(a + 5)^{2} =\]
\[= \left( (a - 5)(a + 5) \right)^{2} =\]
\[= \left( a^{2} - 25 \right)^{2} =\]
\[= a^{4} - 50a^{2} + 625\]
\[8)\ (3x + 4y)^{2}(3x - 4y)^{2} =\]
\[= \left( (3x + 4y)(3x - 4y) \right)^{2} =\]
\[= \left( 9x^{2} - 16y^{2} \right)^{2} =\]
\[= 81x^{4} - 288x^{2}y^{2} + 256y^{4}\]