\[\boxed{\text{572\ (572).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (x - 12)^{2} + 24x =\]
\[= x^{2} - 24x + 144 + 24x =\]
\[= x^{2} + 144\]
\[2)\ (x + 8)^{2} - x(x + 5) =\]
\[= x^{2} + 16x + 64 - x^{2} - 5x =\]
\[= 11x + 64\]
\[3)\ 2x(x + 2) - (x - 2)^{2} =\]
\[= 2x^{2} + 4x - x^{2} + 4x - 4 =\]
\[= x^{2} + 8x - 4\]
\[4)\ (y + 7)^{2} + (y + 2)(y - 7) =\]
\[= 2y^{2} + 9y + 35\]
\[5)\ (a + 1)(a - 1) - (a + 4)^{2} =\]
\[= a^{2} - 1 - a^{2} - 8a - 16 =\]
\[= - 8a - 17\]
\[= 39x + 10\]
\[\boxed{\text{572.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[5x^{2} + 8x = a;\ \ \ \ \ \ x = - 1,6\]
\[x(5x + 8) = a\]
\[- 1,6 \cdot \left( 5 \cdot ( - 1,6) + 8 \right) = a\]
\[a = - 1,6 \cdot ( - 8 + 8)\]
\[a = - 1,6 \cdot 0\]
\[a = 0.\]
\[Подставим:\]
\[x \cdot (5x + 8) = 0\]
\[x = 0\ \ или\ \ 5x + 8 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - \frac{8}{5} = - 1,6.\]
\[Ответ:x = 0;\ - 1,6.\ \]