\[\boxed{\text{571\ (571).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ a^{2} + (3a - b)^{2} =\]
\[= a^{2} + 9a^{2} - 6ab + b^{2} =\]
\[= 10a^{2} - 6ab + b^{2}\]
\[2)\ (4x + 5)^{2} - 40x =\]
\[= 16x^{2} + 40x + 25 - 40x =\]
\[= 16x^{2} + 25\]
\[3)\ 50a^{2} - (7a - 1)^{2} =\]
\[= 50a^{2} - 49a^{2} + 14a - 1 =\]
\[= a^{2} + 14a - 1\]
\[4)\ c^{2} + 36 - (c - 6)^{2} =\]
\[= c^{2} + 36 - c^{2} + 12c - 36 =\]
\[= 12c\]
\[5)\ (x - 2)^{2} + x \cdot (x + 10) =\]
\[= x^{2} - 4x + 4 + x^{2} + 10x =\]
\[= 2x^{2} + 6x + 4\]
\[6)\ 3m \cdot (m - 4) - (m + 2)^{2} =\]
\[= 3m^{2} - 12m - m^{2} - 4m - 4 =\]
\[= 2m^{2} - 16m - 4\]
\[7)\ (y - 9)^{2} + (4 - y)(y + 6) =\]
\[= - 20y + 105\]
\[8)\ (x - 4)(x + 4) - (x - 1)^{2} =\]
\[= x^{2} - 16 - x^{2} + 2x - 1 =\]
\[= 2x - 17\]
\[9)\ (2a - 3b)^{2} + (3a + 2b)^{2} =\]
\[= 13a^{2} + 13b^{2}\]
\[10)\ (x - 5)^{2} - (x - 7)(x + 7) =\]
\[= x^{2} - 10x + 25 - x^{2} + 49 =\]
\[= 74 - 10x\]
\[\boxed{\text{571.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[4x^{2} - 1,2x = a;\ \ \ \ \ \ \ x = 0,3\]
\[x \cdot (4x - 1,2) = a\]
\[0,3 \cdot (4 \cdot 0,3 - 1,2) = a\]
\[0,3 \cdot (1,2 - 1,2) = a\]
\[a = 0,3 \cdot 0\]
\[a = 0.\]
\[Подставим:\]
\[x \cdot (4x - 1,2) = 0\]
\[x = 0\ \ или\ \ 4x - 1,2 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4x = 1,2\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 1,2\ :4\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 0,3\]
\[Ответ:x = 0;0,3.\ \]