\[\boxed{\text{558\ (558).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\left( a^{2} - 25 \right)x = a + 5\]
\[(a - 5)(a + 5)x = a + 5\]
\[1)\ при\ a = - 5:\]
\[a + 5 = 0\]
\[( - 5 - 5) \cdot 0 \cdot x = 0\]
\[0x = 0\]
\[x - любое\ число.\]
\[Ответ:\ при\ a = - 5\ бесконечно\ \]
\[много\ корней.\]
\[2)\ при\ a = 5:\ \]
\[a - 5 = 0\]
\[0 \cdot (5 + 5)x = 5 + 5\]
\[0x = 10\]
\[нет\ корней.\]
\[Ответ:при\ a = 5.\]
\[3)\ при\ a \neq 5\ \ и\ \ a \neq - 5:\ \]
\[x = \frac{a + 5}{(a - 5)(a + 5)} = \frac{1}{a - 5}.\]
\[уравнение\ имеет\ один\ корень.\]
\[Ответ:при\ a \neq \pm 5.\ \]
\[\boxed{\text{558.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ (y + 1)^{2} - 4y(y + 1) =\]
\[= (y + 1)(y + 1 - 4y) =\]
\[= (y + 1)(1 - 3y)\]
\[2)\ 10\left( a^{2} - 5 \right) + \left( a^{2} - 5 \right)^{2} =\]
\[= \left( a^{2} - 5 \right)\left( 10 + a^{2} - 5 \right) =\]
\[= (a^{2} - 5)(a^{2} + 5)\]
\[3)\ (a - 2)^{2} - 6(a - 2) =\]
\[= (a - 2)(a - 2 - 6) =\]
\[= (a - 2)(a - 8)\]
\[4)\ \left( x^{2} - 2 \right)(2x - 4) - \left( x^{2} - 2 \right)(y + 12) =\]
\[= \left( x^{2} - 2 \right)(2x - 4 + y + 12) =\]
\[= (x^{2} - 2)(2x + y + 8)\]
\[5)\ \left( x^{2} - 2 \right)(3y + 5) - \left( x^{2} - 2 \right)(y + 12) =\]
\[= \left( x^{2} - 2 \right)(3y + 5 - y - 12) =\]
\[= (x^{2} - 2)(2y - 7)\]
\[6)\ (4a - 3b)(5a + 8b) + (3b - 4a)(2a + b) =\]
\[= (4a - 3b)(5a + 8b - 2a - b) =\]
\[= (4a - 3b)(3a + 7b)\]
\[7)\ 3a(b - 8) + 7c(8 - b) =\]
\[= (b - 8)(3a - 7c)\]