\[\boxed{\text{543\ (543).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[(2,5a - 1,5b)^{2} - (1,5a - 2,5b)^{2}\]
\[при\ \ a = - 1,5;\ \ \ \ \ b = - 3,5:\]
\[= (a + b)(4a - 4b) =\]
\[= 4 \cdot (a + b)(a - b) =\]
\[= 4 \cdot ( - 1,5 - 3,5)( - 1,5 + 3,5) =\]
\[= 4 \cdot 2 \cdot ( - 5) = - 40.\]
\[\boxed{\text{543.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ 4b + 16c = 4(b + 4c)\]
\[2)\ 12x - 15y = 3(4x - 5y)\]
\[3) - 8a - 18b = - 2(4a + 9b)\]
\[4)\ 24x + 30y = 6(4x + 5y)\]
\[5)\ 10mx - 15my = 5m(2x - 3y)\]
\[6)\ x^{2} + xy = x(x^{2} + y)\]
\[7)\ 3d^{2} - 3cd = 3d(d - c)\]
\[8)\ 4a^{2} + 16ab = 4a(a + 4b)\]
\[9)\ a^{6} - a^{3} = a^{3}(a^{3} - 1)\]
\[10)\ b^{2} + b^{8} = b^{2}\left( 1 + b^{6} \right)\]
\[11)\ 7p^{3} - 5p = p(7p^{2} - 5)\]
\[12)\ 15c^{2}d - 3cd = 3cd(5c - 1)\]
\[13)\ 14x^{2}y + 21xy^{2} =\]
\[= 7xy(2x + 3y)\]
\[14) - 2x^{9} + 6x^{6} = - 2x^{6}(x^{3} - 1)\]
\[15)\ 8a^{4}b^{2} - 36a^{3}b^{7} =\]
\[= 4a^{3}b^{2}\left( 2a - 9b^{5} \right)\]