\[\boxed{\text{530\ (530).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ x^{6} = \left( x^{3} \right)^{2}\]
\[2)\ y^{4} = \left( y^{2} \right)^{2}\]
\[3)\ 4x^{2} = (2x)^{2}\]
\[4)\ \frac{1}{9}x^{4} = \left( \frac{1}{3}x^{2} \right)^{2}\]
\[5)\ a^{8}b^{10} = \left( a^{4}b^{5} \right)^{2}\]
\[6)\ 0,36x^{2}y^{12} = \left( 0,6xy^{6} \right)^{2}\]
\(7)\ 1,21m^{10}n^{20} = \left( 1,1m^{5}n^{10} \right)^{2}\)
\[8)\ 1\frac{9}{16}a^{14}b^{16} = \frac{25}{16}a^{14}b^{16} =\]
\[= \left( \frac{5}{4}a^{7}b^{8} \right)^{2} = \left( 1\frac{1}{4}a^{7}b^{8} \right)^{2}\ \]
\[\boxed{\text{530.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[m = 11x + 9;\ \ n = 11y + 5:\]
\[mn = (11x + 9) \cdot (11y + 5) =\]
\[= 121xy + 55x + 99y + 45 =\]
\[= 11 \cdot (11xy + 5x + 9y) + 45.\]
\[11 \cdot (11xy + 5x + 9y) -\]
\[делится\ на\ 11;\]
\[45\ :11 = 4\ и\ остаток\ 1.\ \]
\[Что\ и\ требовалось\ доказать.\]