\[\boxed{\text{48\ (48).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \frac{7x^{\backslash 3}}{6} - \frac{5x}{18} = \frac{4}{27}\]
\[\frac{21x - 5x}{18} = \frac{4}{27}\]
\[\frac{16x}{18} = \frac{4}{27}\]
\[27 \cdot 16x = 4 \cdot 18\]
\[x = \frac{4 \cdot 18}{27 \cdot 16}\]
\[x = \frac{1}{6}\]
\[Ответ:x = \frac{1}{6}.\]
\[2)\ \frac{2x^{\backslash 4}}{7} + \frac{x^{\backslash 7}}{4} = \frac{15}{14}\]
\[\frac{8x + 7x}{28} = \frac{15}{14}\]
\[\frac{15x}{28} = \frac{15}{14}\]
\[15x \cdot 14 = 28 \cdot 15\]
\[x = \frac{15 \cdot 28}{15 \cdot 14}\]
\[x = 2\]
\[Ответ:x = 2.\]
\[3) - \frac{x}{8} + 1 = \frac{x}{12}\]
\[\frac{x^{\backslash 2}}{12} + \frac{x^{\backslash 3}}{8} = 1\]
\[\frac{2x + 3x}{24} = 1\]
\[\frac{5x}{24} = 1\]
\[5x = 24\]
\[x = \frac{24}{5}\]
\[x = 4\frac{4}{5} = 4,8\]
\[Ответ:x = 4,8.\ \]
\[\boxed{\text{48.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Чтобы\ разделить\ поровну\ и\ на\ 2,\ \]
\[и\ на\ 3,\ число\ должно\ \]
\[делиться\ на\ 6:\]
\[1)\ 36;2)\ 42;3)\ 48.\]
\[Но\ при\ этом\ не\ делится\ на\ 4:\]
\[2)\ 42.\]
\[Ответ:2)\ 42.\]