\[\boxed{\text{463\ (463).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ a^{n + 1} + a^{n} = a^{n} \cdot a + a^{n} \cdot 1 =\]
\[= a^{n} \cdot (a + 1).\]
\[2)\ b^{n} - b^{n - 3} =\]
\[= b^{n - 3} \cdot b^{3} - b^{n - 3} \cdot 1 =\]
\[= b^{n - 3} \cdot \left( b^{3} - 1 \right).\]
\[3)\ c^{n + 2} + c^{n - 4} =\]
\[= c^{n - 4} \cdot c^{6} + c^{n - 4} \cdot 1 =\]
\[= c^{n - 4} \cdot \left( c^{6} + 1 \right).\]
\[4)\ d^{2n} - d^{n} = d^{n} \cdot d^{n} - d^{n} \cdot 1 =\]
\[= d^{n} \cdot \left( d^{n} - 1 \right).\]
\[5)\ 2^{n + 3} + 3 \cdot 2^{n + 2} - 5 \cdot 2^{n + 1} =\]
\[= 2^{n + 1} \cdot \left( 2^{2} + 3 \cdot 2 - 5 \right) =\]
\[= 2^{n + 1} \cdot 5.\]
\[6)\ 9^{n + 1} + 3^{n + 2} =\]
\[= \left( 3^{2} \right)^{n + 1} + 3^{n + 2} =\]
\[= 3^{2n + 2} + 3^{n + 2} =\]
\[= 3^{n + 2} \cdot 3^{n} + 3^{n + 2} \cdot 1 =\]
\[= 3^{n + 2} \cdot \left( 3^{n} + 1 \right)\text{.\ }\]