\[\boxed{\text{462\ (462).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[5x^{2} + 8x = a;\ \ \ \ \ \ x = - 1,6\]
\[x(5x + 8) = a\]
\[- 1,6 \cdot \left( 5 \cdot ( - 1,6) + 8 \right) = a\]
\[a = - 1,6 \cdot ( - 8 + 8)\]
\[a = - 1,6 \cdot 0\]
\[a = 0.\]
\[Подставим:\]
\[x \cdot (5x + 8) = 0\]
\[x = 0\ \ или\ \ 5x + 8 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - \frac{8}{5} = - 1,6.\]
\[Ответ:x = 0;\ - 1,6.\ \]
\[\boxed{\text{462.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ 8x - 2x \cdot (3x + 4) =\]
\[= 8x - 6x^{2} - 8x = - 6x^{2}.\]
\[2)\ 7a^{2} + 3a \cdot (9 - 5a) =\]
\[= 7a^{2} + 27a - 15a^{2} =\]
\[= - 8a^{2} + 27a.\]
\[3)\ 6x \cdot (4x - 7) - 12 \cdot \left( 2x^{2} + 1 \right) =\]
\[= 24x^{2} - 42x - 24x^{2} - 12 =\]
\[= - 42x - 12.\]
\[4)\ c \cdot \left( c^{2} - 1 \right) + c^{2} \cdot (c - 1) =\]
\[= c^{3} - c + c^{3} - c^{2} =\]
\[= 2c^{3} - c^{2} - c.\]
\[= 7m^{2} + 5mn.\]
\[= - x^{3} + 17xy^{2}.\]