\[\boxed{\text{281\ (281).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ 20a^{8} \cdot (9a)^{2} = 20a^{8} \cdot 81a^{2} =\]
\[= 1620\ a^{10}\]
\[2)\ \left( - b^{5} \right)^{4} \cdot 12b^{6} = b^{20} \cdot 12b^{6} =\]
\[= 12b^{26}\]
\[3)\ \left( 3m^{6}n^{3} \right)^{4} \cdot \left( - \frac{1}{81}m^{9}n \right) =\]
\[= 81m^{24}n^{12} \cdot \left( - \frac{1}{81}m^{9}n \right) =\]
\[= - m^{33}n^{13}\]
\[4)\left( 0,2x^{7}y^{8} \right)^{3} \cdot 6x^{2}y^{2} =\]
\[= 0,008x^{21}y^{24} \cdot 6x^{2}y^{2} =\]
\[= 0,048x^{23}y^{26}\]
\[5)\ \left( - \frac{1}{2}ab^{4} \right)^{3} \cdot \left( 4a^{6} \right)^{2} =\]
\[= - \frac{1}{8}a^{3}b^{12} \cdot 16a^{12} = - 2a^{15}b^{12}\]
\[6)\ \left( - \frac{2}{3}x^{2}y \right)^{5} \cdot \left( - \frac{3}{4}xy^{2} \right)^{2} =\]
\[= - \frac{32}{243}x^{10}y^{5} \cdot \frac{9}{16}x^{2}y^{4} =\]
\[= - \frac{32 \cdot 9}{243 \cdot 16}x^{12}y^{9} =\]
\[= - \frac{2 \cdot 1}{27 \cdot 1}x^{12}y^{9} = - \frac{2}{27}x^{12}y^{9}\]