\[\boxed{\text{838.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
\[\textbf{а)}\ 5 \cdot (3a + 7)^{2} = 5 \cdot \left( 9a^{2} + 42a + 49 \right) = 45a² + 210a + 245\]
\[\textbf{б)} - 6 \cdot (4 - b)^{2} = - 6 \cdot \left( 16 - 8b + b^{2} \right) = - 6b^{2} + 48b - 96\]
\[\textbf{в)} - 3 \cdot (2 - x)^{2} - 10x = - 3 \cdot \left( 4 - 4x + x^{2} \right) - 10x =\]
\[= - 12 + 12x - 3x^{2} - 10x = - 3x^{2} + 2x - 12\]
\[\textbf{г)}\ 12a² - 4 \cdot (1 - 2a)^{2} + 8 = 12a^{2} - 4 \cdot \left( 1 - 4a + 4a^{2} \right) + 8 =\]
\[= 12a² - 4 + 16a - 16a^{2} + 8 = - 4a^{2} + 16a + 4\]
\[\boxed{\text{838\ (838).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Одночленами называют выражения, представляющие собой произведение чисел, переменных (буквы x, a, b и тд.) и их степеней.
При решении используем:
1. Формулу квадрата суммы:
Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений плюс квадрат второго выражения:
\[\mathbf{(}\mathbf{a}\mathbf{+}\mathbf{b}\mathbf{)}^{\mathbf{2}}\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{+}\mathbf{2}\mathbf{\text{ab}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\]
2. Формулу квадрата разности:
Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого и второго выражений плюс квадрат второго выражения:
\[\mathbf{(}\mathbf{a}\mathbf{-}\mathbf{b}\mathbf{)}^{\mathbf{2}}\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{-}\mathbf{2}\mathbf{\text{ab}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\]
Решение.
\[\textbf{а)}\ b² + 20b + 100 = (b + 10)²\]
\[*\ = 100\]
\[\textbf{б)}\ b² + 14b + 49 = (b + 7)²\]
\[*\ = b^{2}\]
\[\textbf{в)}\ 16x² + 24xy + 9y² =\]
\[= (4x + 3y)²\]
\[*\ = 9y^{2}\]
\[\textbf{г)}\ 9p² - 42pq + 49q^{2} =\]
\[= (3p - 7q)²\ \]
\[*\ = 9p^{2}\]