\[\boxed{\text{833.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
\[\textbf{а)}\ (x - 3)^{2} + x \cdot (x + 9) = x² -\]
\[- 6x + 9 + x^{2} + 9x = 2x^{2} +\]
\[+ 3x + 9\]
\[\textbf{б)}\ (2a + 5)^{2} - 5 \cdot (4a + 5) =\]
\[= 4a^{2} + 20a + 25 - 20a -\]
\[- 25 = 4a²\]
\[\textbf{в)}\ 9b(b - 1) - (3b + 2)^{2} =\]
\[= 9b^{2} - 9b -\]
\[- \left( 9b^{2} + 12b + 4 \right) =\]
\[= 9b^{2} - 9b - 9b^{2} - 12b - 4 =\]
\[= - 21b - 4\]
\[\textbf{г)}\ (b - 4)^{2} + (b - 1)(2 - b) =\]
\[= b^{2} - 8b + 16 + 2b - b^{2} -\]
\[- 2 + b =\]
\[= - 5b + 14\]
\[\textbf{д)}\ (a + 3)(5 - a) - (a - 1)^{2} =\]
\[= 5a - a^{2} + 15 - 3a -\]
\[- \left( a^{2} - 2a + 1 \right) =\]
\[= 2a - a^{2} + 15 - a^{2} + 2a -\]
\[- 1 = - 2a^{2} + 4a + 14\]
\[\textbf{е)}\ (5 + 2y)(y - 3) -\]
\[- (5 - 2y)^{2} = 5y - 15 + 2y^{2} -\]
\[- 6y - \left( 25 - 20y + 4y^{2} \right) =\]
\[= - y - 15 + 2y^{2} - 25 + 20y -\]
\[- 4y^{2} = - 2y^{2} + 19y - 40\]
\[\boxed{\text{833\ (833).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Чтобы представить трёхчлен в виде квадрата двучлена используем:
1. Формулу квадрата суммы:
Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений плюс квадрат второго выражения:
\[\mathbf{(}\mathbf{a}\mathbf{+}\mathbf{b}\mathbf{)}^{\mathbf{2}}\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{+}\mathbf{2}\mathbf{\text{ab}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\]
2. Формулу квадрата разности:
Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого и второго выражений плюс квадрат второго выражения:
\[\mathbf{(}\mathbf{a}\mathbf{-}\mathbf{b}\mathbf{)}^{\mathbf{2}}\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{-}\mathbf{2}\mathbf{\text{ab}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\]
Решение.
\[\textbf{а)}\ x² + 2xy + y² = (x + y)²\]
\[\textbf{б)}\ p² - 2pq + q^{2} = (p - q)²\]
\[\textbf{в)}\ a² + 12a + 36 = (a + 6)²\]
\[\textbf{г)}\ 64 + 16b + b² = (8 + b)²\]
\[\textbf{д)}\ 1 - 2z + z^{2} = (1 - z)²\]
\[\textbf{е)}\ n² + 4n + 4 = (n + 2)²\ \]