\[\boxed{\text{729.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
Пояснение.
Решение.
\[\textbf{а)}\ p^{2}q^{2} + \text{pq} - q^{3} - p^{3} =\]
\[= \left( \text{qp} - q^{3} \right) - \left( p^{3} - p^{2}q^{2} \right) =\]
\[= q\left( p - q^{2} \right) - p^{2}\left( p - q^{2} \right) =\]
\[= (p - q^{2})(q - p^{2})\]
\[если\ p = 0,5;\ \ q = - 0,5:\]
\[\left( 0,5 - ( - 0,5)^{2} \right)\left( - 0,5 - {0,5}^{2} \right) =\]
\[= (0,5 - 0,25)( - 0,5 - 0,25) =\]
\[= 0,25 \cdot ( - 0,75) = - 0,1875.\]
\[\textbf{б)}\ 3x^{3} - 2y^{3} - 6x^{2}y^{2} + xy =\]
\[= \left( 3x^{3} - 6x^{2}y^{2} \right) + \left( xy - 2y^{3} \right) =\]
\[= 3x^{2}\left( x - 2y^{2} \right) + y\left( x - 2y^{2} \right) =\]
\[= (x - 2y^{2})(3x^{2} + y)\]
\[если\ x = \frac{2}{3};\ y = \frac{1}{2}:\]
\[\left( \frac{2}{3} - 2 \cdot \left( \frac{1}{2} \right)^{2} \right)\left( 3 \cdot \left( \frac{2}{3} \right)^{2} + \frac{1}{2} \right) =\]
\[= \left( \frac{2}{3} - \frac{2}{4} \right)\left( \frac{12}{9} + \frac{1}{2} \right) =\]
\[= \left( \frac{2^{\backslash 2}}{3} - \frac{1^{\backslash 3}}{2} \right)\left( \frac{4^{\backslash 2}}{3} + \frac{1^{\backslash 3}}{2} \right) =\]
\[= \frac{4 - 3}{6} \cdot \frac{8 + 3}{6} = \frac{1}{6} \cdot \frac{11}{6} = \frac{11}{36}\]
\[\boxed{\text{729\ (729).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ Если\ \text{a\ }или\ \text{b\ }делится\ на\ 3,\ то\ \]
\[произведение\ a \cdot b\ делится\ \]
\[на\ 3 \Longrightarrow ab(a + b)(a - b) \Longrightarrow\]
\[\Longrightarrow делится\ на\ 3.\]
\[2)\ Если\ \text{a\ }или\ b\ не\ делится\ на\ 3,\ \]
\[тогда\ остаток\ от\ деления\ \]
\[равен\ 1\ или\ 2.\]
\[Если\ остатки\ одинаковые,\ \]
\[тогда:\]
\[a = 3k + 1;\ \ b = 3p + 1\ \ и\ \text{\ \ }\]
\[(a - b) = 3k + 1 - (3p + 1) =\]
\[= 3k + 1 - 3p - 1 =\]
\[= 3 \cdot (k - p) - делится\ на\ 3 \Longrightarrow\]
\[\Longrightarrow \text{ab}(a + b)(a - b) -\]
\[делится\ на\ \ 3.\]
\[Если\ остатки\ разные,\ тогда:\]
\[a = 3k + 1;\ \ b = 3p + 2;\]
\[(a + b) = 3k + 1 + 3p + 2 =\]
\[= 3k + 3p + 3 =\]
\[= 3 \cdot (k + p + 1) - делится\]
\[на\ 3 \Longrightarrow \text{ab}(a + b)(a - b) -\]
\[делится\ на\ 3.\]
\[Ответ:да,\ верно.\]