Решебник по алгебре 7 класс Макарычев ФГОС Задание 467

Авторы:
Год:2023
Тип:учебник

Задание 467

Выбери издание
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение
 
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение
Издание 1
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение

\[\boxed{\text{467.}\text{\ }еуроки - ответы\ на\ пятёрку}\]

\[\textbf{а)}\ В\ зависимости\ от\ последней\ \]

\[цифры\ числа,\ квадрат\ \]

\[натурального\ числа\ может\ \]

\[оканчиваться:\]

\[0^{2} = 0,\ \ 1^{2} = 1,\ \ \]

\[2^{2} = 4,\ \ 3^{2} = 9,\ \ \]

\[4^{2} = 16,\ \ 5^{2} = 25,\ \ \]

\[6^{2} = 36,\ \ 7^{2} = 49,\ \ \]

\[8^{2} = 64,\ \ 9^{2} = 81.\]

\[Квадрат\ \ натурального\ числа\ \]

\[может\ оканчиваться\ цифрами:\]

\[0;1;4;9;6;5.\]

\[\textbf{б)}\ x^{4} = \left( x^{2} \right)^{2}\text{\ \ }\]

\[Так\ как\ квадрат\ натурального\]

\[\ числа\ оканчивается\ \]

\[цифрами\ 0,\ 1,\ 4,\ 5,\ 6,\ 9;\ \ то\ \]

\[четвертая\ степень\ \]

\[натурального\ числа\ \]

\[оканчивается\ цифрами:\]

\[0^{2} = 0,\ \ 1^{2} = 1,\ \ 4^{2} = 16,\]

\[\text{\ \ }5^{2} = 25,\ \ 6^{2} = 36,\ \ \]

\[9^{2} = 81.\]

\[Четвертая\ степень\ \]

\[натурального\ числа\ может\ \]

\[оканчиваться\ цифрами:\ \ \]

\[0,\ 1,\ 5,\ 6.\]

Издание 2
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{467\ (467).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Решение.

\[\textbf{а)}\ 4x \cdot 7y = 4 \cdot 7 \cdot xy = 28xy\]

\[\textbf{б)} - 8x \cdot 5x^{3} = - 8 \cdot 5 \cdot x^{1 + 3} =\]

\[= - 40x^{4}\]

\[\textbf{в)}\ \frac{4}{9}ab^{3} \cdot \frac{3}{2}ab =\]

\[= \frac{4}{9} \cdot \frac{3}{2} \cdot a^{1 + 1} \cdot b^{3 + 1} = \frac{2}{3}a^{2}b^{4}\]

\[\textbf{г)}\ x^{2}y^{5} \cdot \left( - 6xy^{2} \right) =\]

\[= - 6 \cdot x^{2 + 1} \cdot y^{5 + 2} = - 6x^{3}y^{7}\]

\[\textbf{д)} - 0,6a^{2}b \cdot \left( - 10ab^{2} \right) =\]

\[= - 0,6 \cdot ( - 10) \cdot a^{2 + 1} \cdot b^{1 + 2} =\]

\[= 6a^{3}b^{3}\]

\[\textbf{е)} - \frac{1}{5}m^{3}n^{4} \cdot 5m^{2}n^{3} =\]

\[= - \frac{1}{5} \cdot 5 \cdot m^{3 + 2} \cdot n^{4 + 3} = - m^{5}n^{7}\ \]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам