\[\boxed{\text{234.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
\[Выразим\ из\ формулы\ p:\]
\[p = 10\ :x = \frac{10}{x}.\]
\[если\ \ x = - 5:\ \]
\[p = - \frac{10}{5} = - 2.\]
\[если\ x = 1:\ \ \]
\[p = \frac{10}{1} = 10;\]
\[если\ x = 20:\ \ \]
\[\ p = \frac{10}{20} = 0,5.\]
\[\boxed{\text{234\ (234).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x^{2} + 4x + 3\]
\[(4)^{2} + 4 \cdot ( - 4) + 3 = 0\]
\[16 - 16 + 3 = 0\]
\[3 \neq 0 \Longrightarrow x = - 4\ (не\ корень)\]
\[(3)^{2} + 4 \cdot ( - 3) + 3 = 0\]
\[9 - 12 + 3 = 0\]
\[0 = 0 \Longrightarrow x = - 3\ (корень)\]
\[(1)^{2}\ + 4 \cdot ( - 1) + 3 = 0\]
\[1 - 4 + 3 = 0\]
\[0 = 0 \Longrightarrow x = - 1\ (корень)\]
\[(3)^{2} + 4 \cdot 3 + 3 = 0\]
\[9 + 12 + 3 = 0\]
\[24 \neq 0 \Longrightarrow x = 3 - не\ корень.\]
\[4^{2} + 4 \cdot 4 + 3 = 0\]
\[16 + 16 + 3 = 0\]
\[35 \neq 0 \Longrightarrow x = 4 - не\ корень.\]
\[\textbf{б)}\ x^{2} + x = 12\]
\[(4)^{2} - 4 = 12\]
\[16 - 4 = 12\]
\[12 = 12 \Longrightarrow x = - 4\ (корень)\]
\[(3)^{2} - 3 = 12\]
\[9 - 3 = 12\]
\[6 \neq 12 \Longrightarrow x = - 3\ (не\ корень)\]
\[(1)^{2} - 1 = 12\]
\[1 - 1 = 12\]
\[0 \neq 12 \Longrightarrow x = - 1\ (не\ корень)\]
\[3^{2} + 3 = 12\]
\[9 + 3 = 12\]
\[12 = 12 \Longrightarrow x = 3 - корень\]
\[4^{2} + 4 = 12\]
\[16 + 4 = 12\]
\[20 \neq 12\ \Longrightarrow x = 4 - не\ корень.\]