1. Вынесите общий множитель за скобки:
а) 16a^4-4a^3+8a^2
б) x(x-1)+y(x-1)
2. Разложите на множители:
а) ab-ac+2b-2c
б) 100x^2-9
в) 2n^2+4mn+2m^2
3. Сократите дробь (x^2-4x)/(x^2-16).
4. Упростите выражение c(3-c)-(2+c)(2-c).
5. Решите уравнение (x-2)(4x+8)=0.
6. Выполните действия: a(a-1)(a+1)-(a-2)(a^2+2a+4).
7. Найдите корни уравнения 32x-2x^3=0.
8. Разложите на множители многочлен 3a-3b-a^2+2ab-b^2.
*9. Решите уравнение (1/x+1/5)(1/x-3/7)=0.
\[\boxed{\mathbf{Вариант\ 3}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\boxed{\mathbf{1}\mathbf{\text{.\ }}}\]
\[\textbf{а)}\ 16a^{4} - 4a^{3} + 8a^{2} =\]
\[= 4a^{2}\left( {4a}^{2} - a + 2 \right)\]
\[\textbf{б)}\ x(x - 1) + y(x - 1) =\]
\[= (x - 1)(x + y)\]
\[\boxed{\mathbf{2}\mathbf{\text{.\ }}}\]
\[\textbf{а)}\ ab - ac + 2b - 2c =\]
\[= a(b - c) + 2 \cdot (b - c) =\]
\[= (b - c)(a + 2)\]
\[\textbf{б)}\ 100x² - 9 = (10x)^{2} - 3^{2} =\]
\[= (10x - 3)(10x + 3)\]
\[\textbf{в)}\ 2n² + 4mn + 2m² =\]
\[= 2 \cdot \left( n^{2} + 2mn + m^{2} \right) =\]
\[= 2 \cdot (n + m)^{2} =\]
\[= 2 \cdot (n + m)(n + m)\ \]
\[\boxed{\mathbf{3}\mathbf{\text{.\ }}}\]
\[\frac{x^{2} - 4x}{x^{2} - 16} = \frac{x(x - 4)}{(x - 4)(x + 4)} =\]
\[= \frac{x}{x + 4}\]
\[Ответ:\ \frac{x}{x + 4}.\]
\[\boxed{\mathbf{4}\mathbf{\text{.\ }}}\]
\[c(3 - c) - (2 + c)(2 - c) =\]
\[= 3c - c^{2} - \left( 4 - c^{2} \right) =\]
\[= 3c - c^{2} - 4 + c^{2} = 3c - 4\]
\[Ответ:\ 3c - 4.\]
\[\boxed{\mathbf{5}\mathbf{\text{.\ }}}\]
\[(x - 2)(4x + 8) = 0\]
\[x - 2 = 0\ \ \ \ \ \ \ \ \ \ \ 4x + 8 = 0\]
\[x = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4x = - 8\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - 2\]
\[Ответ:2;\ - 2.\]
\[\boxed{\mathbf{6}\mathbf{\text{.\ }}}\]
\[= a^{3} - a - a^{3} + 8 = 8 - a\]
\[Ответ:8 - \text{a.}\]
\[\boxed{\mathbf{7}\mathbf{\text{.\ }}}\]
\[32x - 2x^{3} = 0\]
\[2x\left( 16 - x^{2} \right) = 0\]
\[2x = 0\ \ \ \ \ \ \ \ \ \ \ \ x^{2} = 16\]
\[x = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ x = \sqrt{16}\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = \pm 4\]
\[Ответ:\ \pm 4;\ \ 0.\]
\[\boxed{\mathbf{8}\mathbf{\text{.\ }}}\]
\[3a - 3b - a^{2} + 2ab - b^{2} =\]
\[= 3 \cdot (a - b) - (a - b)^{2} =\]
\[= (a - b)(3 - a + b)\]
\[Ответ:(a - b)(3 - a + b).\]
\[\boxed{\mathbf{9}\mathbf{\text{.\ }}}\]
\[\left( \frac{1}{x} + \frac{1}{5} \right)\left( \frac{1}{x} - \frac{3}{7} \right) = 0\]
\[1)\ \frac{1}{x} + \frac{1}{5} = 0\]
\[\frac{1}{x} = - \frac{1}{5}\]
\[x = - 5\]
\[2)\ \frac{1}{x} - \frac{3}{7} = 0\]
\[\frac{1}{x} = \frac{3}{7}\]
\[x = \frac{7}{3}\]
\[Ответ:\ - 5;\frac{7}{3}.\]