1. Вынесите общий множитель за скобки:
а) 3a^3b-12a^2b+6ab
б) 7*(x-3)-x(x-3)
2. Разложите на множители:
а) 5a-ab+5c-cb
б) x^2-16y^2
в) a^3-2a^2c+ac^2
3. Сократите дробь (1+2c+c^2)/(a+ac).
4. Упростите выражение (b-2)(b+2)-b(b-1).
5. Решите уравнение (x+1)(3x-6)=0.
6. Выполните действия: (x+1)(x^2+x+1)-x(x-3)(x+3).
7. Найдите корни уравнения x^3+4x^2+4x=0.
8. Разложите на множители многочлен c^2-2cd+d^2-3c+3d.
*9. Решите уравнение (1/2-1/x)(2/3+1/x)=0
\[\boxed{\mathbf{Вариант\ 2}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\boxed{\mathbf{1}\mathbf{\text{.\ }}}\]
\[\textbf{а)}\ 3a³b - 12a^{2}b + 6ab =\]
\[= 3ab(a^{2} - 4a + 2)\]
\[\textbf{б)}\ 7 \cdot (x - 3) - x(x - 3) =\]
\[= (x - 3)(7 - x)\]
\[\boxed{\mathbf{2}\mathbf{\text{.\ }}}\]
\[\textbf{а)}\ 5a - ab + 5c - cb =\]
\[= 5 \cdot (a + c) - b(a + c) =\]
\[= (a + c)(5 - b)\]
\[\textbf{б)}\ x² - 16y^{2} = x^{2} - (4y)^{2} =\]
\[= (x - 4y)(x + 4y)\]
\[\textbf{в)}\ a³ - 2a^{2}c + ac^{2} =\]
\[= a\left( a^{2} - 2ac + c^{2} \right) =\]
\[= a(a - c)^{2} = a(a - c)(a - c)\ \]
\[\boxed{\mathbf{3}\mathbf{\text{.\ }}}\]
\[\frac{1 + 2c + c²}{a + ac} = \frac{(1 + c)²}{a(1 + c)} = \frac{1 + c}{a}\]
\[Ответ:\ \frac{1 + c}{a}.\]
\[\boxed{\mathbf{4}\mathbf{\text{.\ }}}\]
\[(b - 2)(b + 2) - b(b - 1) =\]
\[= b^{2} - 4 - b^{2} + b = b - 4.\]
\[Ответ:\ \ b - 4.\]
\[\boxed{\mathbf{5}\mathbf{\text{.\ }}}\]
\[(x + 1)(3x - 6) = 0\]
\[x + 1 = 0\ \ \ \ \ \ \ \ \ 3x - 6 = 0\]
\[x = - 1\ \ \ \ \ \ \ \ \ \ \ \ \ 3x = 6\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 2\]
\[Ответ:\ - 1;\ \ 2.\]
\[\boxed{\mathbf{6}\mathbf{\text{.\ }}}\]
\[= x^{3} + 2x^{2} + 2x + 1 - x^{3} + 9x =\]
\[= 2x^{2} + 11x + 1\]
\[Ответ:\ \ 2x² + 11x + 1.\]
\[\boxed{\mathbf{7}\mathbf{\text{.\ }}}\]
\[x^{3} + 4x^{2} + 4x = 0\]
\[x\left( x^{2} + 4x + 4 \right) = 0\]
\[x = 0\ \ \ \ \ \ \ \ \ \ \ \ (x + 2)^{2} = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - 2\]
\[Ответ:0;\ - 2.\]
\[\boxed{\mathbf{8}\mathbf{\text{.\ }}}\]
\[c^{2} - 2cd + d^{2} - 3c + 3d =\]
\[= (c - d)^{2} - 3 \cdot (c - d) =\]
\[= (c - d)(c - d - 3)\]
\[Ответ:\ \ (c - d)(c - d - 3).\]
\[\boxed{\mathbf{9}\mathbf{\text{.\ }}}\]
\[\left( \frac{1}{2} - \frac{1}{x} \right)\left( \frac{2}{3} + \frac{1}{x} \right) = 0\]
\[1)\ \frac{1}{2} - \frac{1}{x} = 0\]
\[\frac{1}{x} = \frac{1}{2}\]
\[x = 2\]
\[2)\ \frac{1}{x} + \frac{2}{3} = 0\]
\[\frac{1}{x} = - \frac{2}{3}\]
\[x = - \frac{3}{2}\]
\[x = - 1,5\]
\[Ответ:2;\ - 1,5.\]