1. Вынесите общий множитель за скобки:
а) 6a^3-12a^2b+18a^2
б) x(x-2)+3*(x-2)
2. Разложите на множители:
а) xy+3y+xz+3z
б) 25a^2-c^2
в) cb^2+2bc^2+c^3
3. Сократите дробь (x^2-xy)/(x^2-y^2).
4. Упростите выражение a(a-2)-(a-1)(a+1).
5. Решите уравнение (x-5)(2x+8)=0.
6. Выполните действия: c(c-2)(c+2)-(c-1)(c^2+c+1).
7. Найдите корни уравнения 3x^3-27x=0.
8. Разложите на множители многочлен 2x+2y-x^2-2xy-y^2.
*9. Решите уравнение (1/x+1/3)(1/x-3/4)=0.
\[\boxed{\mathbf{Вариант\ 1.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\boxed{\mathbf{1.\ }}\]
\[\textbf{а)}\ 6a³ - 12a^{2}b + 18a^{2} =\]
\[= 6a²(a - 2b + 3)\]
\[\textbf{б)}\ x(x - 2) + 3 \cdot (x - 2) =\]
\[= (x - 2)(x + 3)\ \]
\[\boxed{\mathbf{2}\mathbf{\text{.\ }}}\]
\[\textbf{а)}\ xy + 3y + xz + 3z =\]
\[= x(y + z) + 3 \cdot (y + z) =\]
\[= (y + z)(x + 3)\]
\[\textbf{б)}\ 25a² - c^{2} = (5a)^{2} - c^{2} =\]
\[= (5a - c)(5a + c)\]
\[\textbf{в)}\ cb² + 2bc² + c³ =\]
\[= c\left( b^{2} + 2bc + c^{2} \right) =\]
\[= c \cdot (b + c)^{2} = c(b + c)(b + c)\ \]
\[\boxed{\mathbf{3}\mathbf{\text{.\ }}}\]
\[\frac{x^{2} - xy}{x^{2} - y^{2}} = \frac{x(x - y)}{(x - y)(x + y)} =\]
\[= \frac{x}{x + y}\]
\[Ответ:\ \frac{x}{x + y}.\]
\[\boxed{\mathbf{4}\mathbf{\text{.\ }}}\]
\[a(a - 2) - (a - 1)(a + 1) =\]
\[= a^{2} - 2a - \left( a^{2} - 1 \right) =\]
\[= a^{2} - 2a - a^{2} + 1 =\]
\[= 1 - 2a\]
\[Ответ:1 - 2a.\]
\[\boxed{\mathbf{5}\mathbf{\text{.\ }}}\]
\[(x - 5)(2x + 8) = 0\]
\[x - 5 = 0\ \ \ \ \ \ \ \ \ \ \ \ \ 2x + 8 = 0\]
\[x = 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x = - 8\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - 4\]
\[Ответ:5;\ - 4.\]
\[\boxed{\mathbf{6}\mathbf{\text{.\ }}}\]
\[Ответ:1 - 4c.\]
\[\boxed{\mathbf{7}\mathbf{\text{.\ }}}\]
\[3x^{3} - 27x = 0\]
\[3x\left( x^{2} - 9 \right) = 0\]
\[3x = 0\ \ \ \ \ \ \ \ \ \ \ x^{2} - 9 = 0\]
\[x = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ x = \sqrt{9}\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = \pm 3\]
\[Ответ:0;\ \pm 3.\]
\[\boxed{\mathbf{8}\mathbf{\text{.\ }}}\]
\[2x + 2y - x^{2} - 2xy - y^{2} =\]
\[= 2 \cdot (x + y) - (x + y)^{2} =\]
\[= (x + y)(2 - x - y)\]
\[Ответ:\ \ (x + y)(2 - x - y).\]
\[\boxed{\mathbf{9}\mathbf{\text{.\ }}}\]
\[\left( \frac{1}{x} + \frac{1}{3} \right) \cdot \left( \frac{1}{x} - \frac{3}{4} \right) = 0\]
\[1)\ \frac{1}{x} + \frac{1}{3} = 0\]
\[\frac{1}{x} = - \frac{1}{3}\]
\[x = - 3\]
\[2)\ \frac{1}{x} - \frac{3}{4} = 0\]
\[\frac{1}{x} = \frac{3}{4}\]
\[x = \frac{4}{3}\]
\[Ответ:\ - 3;\ \frac{4}{3}.\]