Условие:
1. Разложите на множители:
1) 1000m^3-n^3
2) 81a^3-ab^2
3)-8x^2-16xy-8y^2
4) 5mn+15m-10n-30
5) 256-b^4
2. Упростите выражение y(y-5)(y+5)-(y+2)(y^2-2y+4).
3. Разложите на множители:
1) a^2-36b^2+a-6b
2) 25x^2-10y+y^2-9
3) ay^7+y^7-ay^3-y^3
4) 4-m^2+14mn-49n^2
4. Решите уравнение:
1) 2x^3-32x=0
2) 81x^3+18x^2+x=0
3) x^3+6x^2-x-6=0
5. Докажите, что значение выражения 2^9+10^3 делится нацело на 18.
6. Известно, что a-b=10; ab=7. Найдите значение выражения (a+b)^2.
Решение:
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[1)\ 1000m^{3} - n^{3} =\]
\[= (10m - n)\left( 100m^{2} + 10mn + n^{2} \right)\]
\[2)\ 81a^{3} - ab^{2} = a\left( 81a^{2} - b^{2} \right) =\]
\[= a(9a - b)(9a + b)\]
\[3) - 8x^{2} - 16xy - 8y^{2} =\]
\[= - 8 \cdot \left( x^{2} + 2xy + y^{2} \right) =\]
\[= - 8 \cdot (x + y)(x + y)\]
\[4)\ 5mn + 15m - 10n - 30 =\]
\[= 5m(n + 3) - 10(n + 3) =\]
\[= (n + 3)(5m - 10) =\]
\[= 5 \cdot (n + 3)(m - 2)\]
\[5)\ 256 - b^{4} =\]
\[= \left( 16 - b^{2} \right)\left( 16 + b^{2} \right) =\]
\[= (4 - b)(4 + b)\left( 16 + b^{2} \right)\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[y(y - 5)(y + 5) - (y + 2)\left( y^{2} - 2y + 4 \right) =\]
\[= y\left( y^{2} - 25 \right) - \left( y^{3} + 8 \right) =\]
\[= y^{3} - 25y - y^{3} - 8 =\]
\[= - 25y - 8.\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[1)\ a^{2} - 36b^{2} + a - 6b =\]
\[= (a - 6b)(a + 6b) + (a - 6b) =\]
\[= (a - 6b)(a + 6b + 1)\]
\[2)\ 25x^{2} - 10y + y^{2} - 9 =\]
\[= (5x - y)^{2} - 3^{2} =\]
\[= (5x - y - 3)(5x - y + 3)\]
\[3)\ ay^{7} + y^{7} - ay^{3} - y^{3} =\]
\[= y^{7}(a + 1) - y^{3}(a + 1) =\]
\[= (a + 1)\left( y^{7} - y^{3} \right) =\]
\[= y^{3}(a + 1)\left( y^{4} - 1 \right) =\]
\[= y^{3}(a + 1)\left( y^{2} - 1 \right)\left( y^{2} + 1 \right) =\]
\[= y^{3}(a + 1)(y - 1)(y + 1)\left( y^{2} + 1 \right)\]
\[4)\ 4 - m^{2} + 14mn - 49n^{2} =\]
\[= 4 - \left( m^{2} - 14mn + 49n^{2} \right) =\]
\[= 2^{2} - (m - 7n)^{2} =\]
\[= (2 - m + 7n)(2 + m - 7n)\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[1)\ 2x^{3} - 32x = 0\]
\[2x\left( x^{2} - 16 \right) = 0\]
\[2x(x - 4)(x + 4) = 0\]
\[2x = 0;\ \ \ \ x - 4 = 0;\ \ \ x + 4 = 0\]
\[x = 0\ \ \ \ \ \ \ \ x = 4\ \ \ \ \ \ \ \ \ \ \ \ \ x = - 4\]
\[Ответ:x = 0;\ \ x = \pm 4.\]
\[2)\ 81x^{3} + 18x^{2} + x = 0\]
\[x\left( 81x^{2} + 18x + 1 \right) = 0\]
\[x(9x + 1)^{2} = 0\]
\[x = 0;\ \ \ \ \ \ \ \ \ 9x + 1 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9x = - 1\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - \frac{1}{9}\]
\[Ответ:x = - \frac{1}{9};\ \ x = 0.\]
\[3)\ x^{3} + 6x^{2} - x - 6 = 0\]
\[x^{2}(x + 6) - (x + 6) = 0\]
\[(x + 6)\left( x^{2} - 1 \right) = 0\]
\[(x + 6)(x - 1)(x + 1) = 0\]
\[x = - 6;\ \ \ x = 1;\ \ \ x = - 1\]
\[Ответ:x = \pm 1;\ \ x = - 6.\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[2^{9} + 10^{3}\ делится\ на\ 18.\]
\[2^{9} + 10^{3} = \left( 2^{3} \right)^{3} + 10^{3} =\]
\[= 8^{3} + 10^{3} =\]
\[= (8 + 10)(64 - 80 + 100) =\]
\[= 18 \cdot 84\]
\[Так\ как\ один\ из\ множителей\ \ \]
\[делится\ на\ 18\ без\ остатка,\ то\ и\ \ \ \]
\[все\ выражение\ делится\ нацело\ \]
\[на\ 18.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[a - b = 10;\ \ ab = 7;\ \ (a + b)^{2} = ?\]
\[(a + b)^{2} = (a - b)^{2} + 4\text{ab} =\]
\[= 10^{2} + 4 \cdot 7 = 100 + 28 = 128.\]