Условие:
1. Разложите на множители:
1) m^3+125n^3
2) xy^2-16x^3
3)-5x^2+30x-45
4) 7xy-42x+14y-84
5) 10 000-c^4
2. Упростите выражение b(b-3)(b+3)-(b-1)(b^2+b+1).
3. Разложите на множители:
1) 81c^2-d^2+9c+d
2) a^2+8ab+16b^2-1
3) ax^6-3x^6-ax^3+3x^3
4) 25-m^2-12mn-36n^2
4. Решите уравнение:
1) 3x^3-108x=0
2) 121x^3-22x^2+x=0
3) x^3-2x^2-9x+18=0
5. Докажите, что значение выражения 3^9-5^3 делится нацело на 22.
6. Известно, что a+b=9; ab=-12. Найдите значение выражения (a-b)^2.
Решение:
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[1)\ m^{3} + 125n^{3} =\]
\[= (m + 5n)\left( m^{2} - 5mn + 25n^{2} \right)\]
\[2)\ xy^{2} - 16x^{3} = x\left( y^{2} - 16x^{2} \right) =\]
\[= x(y - 4x)(y + 4x)\]
\[3) - 5x^{2} + 30x - 45 =\]
\[= - 5 \cdot \left( x^{2} - 6x + 9 \right) =\]
\[= - 5 \cdot (x - 3)(x - 3)\]
\[4)\ 7xy - 42x + 14y - 84 =\]
\[= 7x(y - 6) + 14 \cdot (y - 6) =\]
\[= (y - 6)(7x + 14) =\]
\[= 7 \cdot (x + 2)(y - 6)\]
\[5)\ 10\ 000 - c^{4} =\]
\[= \left( 100 - c^{2} \right)\left( 100 + c^{2} \right) =\]
\[= (10 - c)(10 + c)\left( 100 + c^{2} \right)\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[b(b - 3)(b + 3) - (b - 1)\left( b^{2} + b + 1 \right) =\]
\[= b\left( b^{2} - 9 \right) - (b^{3} - 1) =\]
\[= b^{3} - 9b - b^{3} + 1 = - 9b + 1\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[1)\ 81c^{2} - d^{2} + 9c + d =\]
\[= (9c - d)(9c + d) + (9c + d) =\]
\[= (9c + d)(9c - d + 1)\]
\[2)\ a^{2} + 8ab + 16b^{2} - 1 =\]
\[= \left( a^{2} + 8ab + 16b^{2} \right) - 1 =\]
\[= (a + 4b)^{2} - 1^{2} =\]
\[= (a + 4b - 1)(a + 4b + 1)\]
\[3)\ ax^{6} - 3x^{6} - ax^{3} + 3x^{3} =\]
\[= x^{6}(a - 3) - x^{3}(a - 3) =\]
\[= (a - 3)\left( x^{6} - x^{3} \right) =\]
\[= x^{3}\left( x^{3} - 1 \right)(a - 3) =\]
\[= x^{3}(x - 1)(x^{2} + x + 1)(a - 3)\]
\[4)\ 25 - m^{2} - 12mn - 36n^{2} =\]
\[= 25 - \left( m^{2} + 12mn + 36n^{2} \right) =\]
\[= 5^{2} - (m + 6n)^{2} =\]
\[= (5 - m - 6n)(5 + m + 6n)\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[1)\ 3x^{3} - 108x = 0\]
\[3x\left( x^{2} - 36 \right) = 0\]
\[3x(x - 6)(x + 6) = 0\]
\[3x = 0;\ \ \ \ \ x - 6 = 0;\ \ \ x + 6 = 0\]
\[x = 0\ \ \ \ \ \ \ \ \ \ x = 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - 6\]
\[Ответ:x = \pm 6;\ \ x = 0.\]
\[2)\ 121x^{3} - 22x^{2} + x = 0\]
\[x\left( 121x^{2} - 22x + 1 \right) = 0\]
\[x(11x - 1)^{2} = 0\]
\[x = 0;\ \ \ \ \ \ \ \ 11x - 1 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 11x = 1\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = \frac{1}{11}\]
\[Ответ:\ \ x = 0;\ \ x = \frac{1}{11}.\]
\[3)\ x^{3} - 2x^{2} - 9x + 18 = 0\]
\[x^{2}(x - 2) - 9 \cdot (x - 2) = 0\]
\[(x - 2)\left( x^{2} - 9 \right) = 0\]
\[(x - 2)(x - 3)(x + 3) = 0\]
\[x - 2 = 0;\ \ \ x + 3 = 0;\ \ \ x - 3 = 0\]
\[x = 2\ \ \ \ \ \ \ \ \ \ \ x = - 3\ \ \ \ \ \ \ \ x = 3\]
\[Ответ:x = \pm 3;\ \ x = 2.\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[3^{9} - 5^{3}\ делится\ на\ 22.\]
\[3^{9} - 5^{3} = \left( 3^{3} \right)^{3} - 5^{3} = 27^{3} - 5^{3} =\]
\[= (27 - 5)\left( 27^{2} + 27 \cdot 5 + 5^{2} \right) =\]
\[= 22 \cdot \left( 27^{2} + 27 \cdot 5 + 5^{2} \right)\]
\[Если\ один\ из\ множителей\ \]
\[делится\ на\ 22,\ то\ и\ все\ \]
\[выражение\ делится\ на\ 22.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[a + b = 9;\ ab = - 12;\ (a - b)^{2} = ?\]
\[(a - b)^{2} = (a + b)^{2} - 4\text{ab} =\]
\[= 9^{2} - 4 \cdot ( - 12) = 81 + 48 = 129.\]