\[\boxed{Вариант\ 3.}\]
\[\boxed{\mathbf{1.}}\]
\[График\ проходит\ через\ точку\ с\]
\[координатами\ ( - 1;0);k > 0:\]
\[y = kx - 1.\]
\[И\ через\ точку\ (1;\ 4):\]
\[при\ x = 1 \rightarrow y = 4.\]
\[1)\ 5x + y = 1\]
\[y = - 5x + 1.\]
\[2)\ 5x - y = 1\]
\[y = 5x - 1.\]
\[3)\ x - 5y = 1\]
\[5y = x - 1.\]
\[4)\ x + 5y = 1\]
\[5y = - x + 1.\]
\[Нам\ подходит\ уравнение\ 2).\]
\[Ответ:2)\ 5x - y = 1.\]
\[\boxed{\mathbf{2.}}\]
\[\left\{ \begin{matrix} 5x - y = 23\ \ \\ 5x + 2y = 14 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} y = 5x - 23\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 5x + 2 \cdot (5x - 23) = 14 \\ \end{matrix} \right.\ \]
\[5x + 10x - 46 = 14\]
\[15x = 14 + 46\]
\[15x = 60\]
\[x = 4.\]
\[y = 5x - 23 = 5 \cdot 4 - 23 = - 3.\]
\[\left\{ \begin{matrix} x_{0} = 4\ \ \ \\ y_{0} = - 3 \\ \end{matrix} \right.\ \]
\[x_{0} + y_{0} = 4 - 3 = 1.\]
\[Ответ:1)\ 1.\]
\[\boxed{\mathbf{3.}}\]
\[\left\{ \begin{matrix} 2x - 15y = 21\ \ \ \ \ \ \ \ \ \\ 12x + 5y = 31\ \ | \cdot 3 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 2x - 15y = 21\ \ \\ 36x + 15y = 93 \\ \end{matrix} \right.\ ( + )\]
\[38x = 114\]
\[x = 114\ :38\]
\[x = 3.\]
\[5y = 31 - 12x = 31 - 12 \cdot 3 = 31 - 36\]
\[5y = - 5\]
\[y = - 1.\]
\[\left\{ \begin{matrix} x_{0} = 3\ \ \ \ \\ y_{0} = - 1 \\ \end{matrix} \right.\ \]
\[x_{0} - y_{0} = 3 + 1 = 4.\]
\[Ответ:4)\ 4.\]
\[\boxed{\mathbf{4.}}\]
\[\left\{ \begin{matrix} \frac{2x + 3y}{4} + \frac{3x - 4y}{3} = \frac{43}{12}\ \ \ | \cdot 12 \\ \frac{3x + 4y}{2} - \frac{5x - 4y}{5} = - \frac{9}{5}\ \ \ \ | \cdot 10 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 6x + 9y + 12x - 16y = 43\ \ \ \ \ \ \\ 15x + 20y - 10x + 8y = - 18 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 18x - 7y = 43\ \ | \cdot 4 \\ 5x + 28y = - 18\ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 72x - 28y = 172 \\ 5x + 28y = - 18\ \\ \end{matrix} \right.\ ( + )\]
\[77x = 154\]
\[x = 154\ :77\]
\[x = 2.\]
\[7y = 18x - 43 = 18 \cdot 2 - 43 = 36 - 43\]
\[7y = - 7\]
\[y = - 1.\]
\[\left\{ \begin{matrix} x = 2\ \ \ \ \\ y = - 1 \\ \end{matrix} \right.\ \]
\[Ответ:(2;\ - 1).\]
\[\boxed{\mathbf{5.}}\]
\[Пусть\ \text{x\ }г - конфет\ в\ одном\ пакете;\]
\[(x + 50)\ г - конфет\ в\ одной\ коробке;\]
\[10x\ г - масса\ всех\ пакетов;\]
\[7 \cdot (x + 50)\ г - масса\ всех\ коробок.\]
\[Всего\ расфасовали\ 2900\ г\ конфет.\]
\[Составим\ уравнение:\]
\[10x + 7 \cdot (x + 50) = 2900\]
\[10x + 7x + 350 = 2900\]
\[17x = 2900 - 350\]
\[17x = 2550\]
\[x = 2550\ :17 = 150\ (г) - конфет\ в\ \]
\[одном\ пакете.\]
\[7 \cdot (150 + 50) = 1400\ (г) - конфет\ \]
\[расфасовали\ в\ коробки.\]
\[Ответ:1400\ г.\]
\[\boxed{\mathbf{6.}}\]
\[\left\{ \begin{matrix} x + 2y = - 10 \\ 0,25y - x = 1 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} 2y = - x - 10 \\ 0,25y = x + 1 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y = - 0,5x - 5 \\ y = 4x + 4\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[Ответ:( - 2; - 4).\]