\[\boxed{\mathbf{27.}}\]
\[\textbf{а)}\ tg\ 3x = tg\ 5x\]
\[\frac{\sin{3x}}{\cos{3x}} = \frac{\sin{5x}}{\cos{5x}}\]
\[\frac{\sin{3x}\cos{5x} - \sin{5x}\cos{3x}}{\cos{3x}\cos{5x}} = 0\]
\[\frac{\sin( - 2x)}{\cos{3x}\cos{5x}} = 0\]
\[- \sin{2x} = 0\]
\[2x = \pi n\]
\[x = \frac{\text{πn}}{2}.\]
\[\cos\left( 3 \cdot \frac{\text{πn}}{2} \right)\cos\left( 5 \cdot \frac{\text{πn}}{2} \right) = 0\ \]
\[при\ n - нечетное\ число;\]
\[\cos\left( 3 \cdot \frac{\text{πn}}{2} \right)\cos\left( 5 \cdot \frac{\text{πn}}{2} \right) \neq 0\ \]
\[при\ n - четное\ число.\]
\[Ответ:\ x = \frac{\text{πn}}{2};n - четное\ \]
\[число.\]
\[\textbf{б)}\ cyg\ 3x = ctg\ 5x\ \]
\[\frac{\cos{3x}}{\sin{3x}} - \frac{\cos{5x}}{\sin{5x}} = 0\]
\[\frac{\cos{3x}\sin{5x} - \cos{5x}\sin{3x}}{\sin{3x}\sin{5x}} = 0\]
\[\frac{\sin{2x}}{\sin{3x}\sin{5x}} = 0\]
\[\sin{2x} = 0\]
\[x = \frac{\text{πn}}{2}.\]
\[При\ n - четное\ число:\]
\[решений\ нет.\]
\[При\ n - нечетное\ число:\]
\[ctg\ 3 \cdot \frac{\pi(2m + 1)}{2} =\]
\[= ctg\ 5 \cdot \frac{\pi(2m + 1)}{2}\]
\[\text{ctg\ }\left( 3\pi m + \frac{3\pi}{2} \right) =\]
\[= ctg\ \left( 5\pi m + \frac{5\pi}{2} \right)\]
\[\text{ctg}\frac{3\pi}{2} = ctg\frac{5\pi}{2}\]
\[0 = 0.\]
\[Ответ:x = \frac{n}{2};\ \ n - нечетное\]
\[\ число.\]
\[\textbf{в)}\sin x = \frac{\cos x}{\sin x}\]
\[\frac{\text{si}n^{2}x - \cos x}{\sin x} = 0;\ \sin x \neq 0;\]
\[x \neq \text{πn}\]
\[\text{si}n^{2}x - \cos x = 0\]
\[1 - cos^{2}x - \cos x = 0\]
\[\text{co}s^{2}x + \cos x - 1 = 0\]
\[\cos x = t;\ - 1 \leq t \leq 1:\]
\[t^{2} + t - 1 = 0\]
\[D = 1 + 4 = 5\]
\[t = \frac{- 1 \pm \sqrt{5}}{2}.\]
\[\cos x =\]
\[= \frac{- 1 - \sqrt{5}}{2} < - 1\ (не\ подходит);\]
\[\cos x = \frac{- 1 + \sqrt{5}}{2}\]
\[x = \pm \arccos\left( \frac{- 1 + \sqrt{5}}{2} \right) + 2\pi n.\]
\[Ответ:x =\]
\[= \pm \arccos\left( \frac{- 1 + \sqrt{5}}{2} \right) + 2\pi n.\ \]
\[\textbf{г)}\cos x = \frac{\sin x}{\cos x}\ \]
\[\frac{\text{co}s^{2}x - \sin x}{\cos x} = 0;\ \]
\[\ \cos x \neq 0;\ x \neq \frac{\pi}{2} + \pi n\]
\[\text{co}s^{2}x - \sin x = 0\]
\[1 - \sin^{2}x - \sin x = 0\]
\[\sin^{2}x + \sin x - 1 = 0\]
\[\sin x = t;\ - 1 \leq t \leq 1:\]
\[t^{2} + t - 1 = 0\]
\[D = 1 + 4 = 5\]
\[t = \frac{- 1 \pm \sqrt{5}}{2}.\]
\[\sin x =\]
\[= \frac{- 1 - \sqrt{5}}{2} < - 1\ (не\ подходит);\]
\[\sin x = \frac{- 1 + \sqrt{5}}{2}\]
\[x = ( - 1)^{n}\arcsin\left( \frac{- 1 + \sqrt{5}}{2} \right) + \pi n.\]
\[Ответ:\ x =\]
\[= ( - 1)^{n}\arcsin\left( \frac{- 1 + \sqrt{5}}{2} \right) + \pi n.\]