\[\boxed{\mathbf{26.}}\]
\[\textbf{а)}\ \frac{\sin{2x}}{\cos{2x}} = \frac{\sin x}{\cos x}\]
\[\frac{\sin{2x} \cdot \cos x - \cos{2x}\sin x}{\cos{2x}\cos x} = 0\]
\[\frac{\sin x}{\cos{2x}\cos x} = 0\]
\[\sin x = 0\]
\[x = \pi n.\]
\[Проверка:\]
\[\cos(2\pi n) \cdot \cos\left( \text{πn} \right) =\]
\[= 1 \cdot ( - 1) = - 1 \neq 0\]
\[x = \pi n - корень.\]
\[Ответ:\ x = \pi n.\]
\[\textbf{б)}\ \frac{\sin{2x}}{\cos{2x}} = \frac{\sin x}{\cos x}\]
\[\frac{\sin{2x} \cdot \cos x + \cos{2x}\sin x}{\cos{2x}\cos x} = 0\]
\[\frac{\sin{3x}}{\cos{2x}\cos x} = 0\]
\[\sin{3x} = 0\]
\[3x = \pi n\]
\[x = \frac{\text{πn}}{3}.\]
\[Проверка:\]
\[\cos\left( \frac{2\pi n}{3} \right) \cdot \cos\left( \frac{\text{πn}}{3} \right) =\]
\[= - \frac{1}{2} \cdot \frac{1}{2} = - \frac{1}{4} \neq 0;\]
\[x = \frac{\text{πn}}{3} - корень.\]
\[Ответ:x = \frac{\text{πn}}{3}.\]
\[\textbf{в)}\ \frac{\sin x}{\cos x} = \frac{\sin{4x}}{\cos{4x}}\]
\[\frac{\sin x\cos{4x} - \sin{4x}\cos x}{\cos x\cos{4x}} = 0\]
\[\frac{\sin{( - 3x)}}{\cos x\cos{4x}} = 0\]
\[- \sin{3x} = 0\]
\[3x = \pi n\]
\[x = \frac{\text{πn}}{3}.\]
\[Проверка:\]
\[\cos\frac{\text{πn}}{3} \cdot \cos{4 \cdot \frac{\text{πn}}{3}} = \frac{1}{2} \cdot \left( - \frac{1}{2} \right) =\]
\[= - \frac{1}{4} \neq 0;\]
\[x = \frac{\text{πn}}{3} - корень.\]
\[Ответ:x = \frac{\text{πn}}{3}.\]
\[\textbf{г)}\ \frac{\sin x}{\cos x} = - \frac{\sin{4x}}{\cos{4x}}\]
\[\frac{\sin x\cos{4x} + \sin{4x}\cos x}{\cos x\cos{4x}} = 0\]
\[\frac{\sin{(5x)}}{\cos x\cos{4x}} = 0\]
\[\sin{5x} = 0\]
\[5x = \pi n\]
\[x = \frac{\text{πn}}{5}.\]
\[Проверка:\]
\[\cos\frac{\text{πn}}{5} \cdot \cos{5 \cdot \frac{\text{πn}}{3}} \neq 0;\]
\[x = \frac{\text{πn}}{5} - корень.\]
\[Ответ:x = \frac{\text{πn}}{5}.\]