\[\boxed{\mathbf{28.}}\]
\[\textbf{а)}\ 10^{\lg\left( x^{2} + 5x - 1 \right)} = 3x + 2\]
\[x^{2} + 5x - 1 = 3x + 2\]
\[x^{2} + 2x - 3 = 0\]
\[D_{1} = 1 + 3 = 4\]
\[x_{1} = - 1 + 2 = 1;\]
\[x_{2} = - 1 - 2 = - 3.\]
\[Проверка.\]
\[x = - 3:\]
\[10^{\lg( - 7)} - не\ существует.\]
\[x = 1:\]
\[10^{\lg 5} = 3 + 2\]
\[5 = 5.\]
\[Ответ:x = 1.\]
\[\textbf{б)}\ 10^{\lg\left( x^{2} - 3x + 1 \right)} = x - 2\]
\[x^{2} - 3x + 1 = x - 2\]
\[x^{2} - 4x + 3 = 0\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = 2 + 1 = 3;\]
\[x_{2} = 2 - 1 = 1.\]
\[Проверка.\]
\[x = 3:\]
\[10^{\lg 1} = 3 - 2\]
\[1 = 1.\]
\[x = 1:\]
\[10^{\lg( - 1)} - не\ существует.\]
\[Ответ:x = 3.\]
\[\textbf{в)}\ 2^{\log_{2}\left( 2x^{2} + 5x - 1 \right)} = x^{2} - 7\]
\[2x^{2} + 5x - 1 = x^{2} - 7\]
\[x^{2} + 5x + 6 = 0\]
\[x_{1} + x_{2} = - 5;\ \ x_{1} \cdot x_{2} = 6\]
\[x_{1} = - 2;\ \ x_{2} = - 3.\]
\[Проверка:\]
\[x = - 3:\]
\[2^{\log_{2}2} = 9 - 7\]
\[2 = 2.\]
\[x = - 2:\]
\[2^{\log_{2}( - 3)} - не\ существует.\]
\[Ответ:x = - 3.\]
\[\textbf{г)}\ 5^{\log_{5}\left( 3x^{2} + 4x - 1 \right)} = 2x^{2} - 4\]
\[3x^{2} + 4x - 1 = 2x^{2} - 4\]
\[x^{2} + 4x + 3 = 0\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = - 2 + 1 = - 1;\]
\[x_{2} = - 2 - 1 = - 3.\]
\[Проверка.\]
\[x = - 1:\]
\[5^{\log_{5}( - 2)} - не\ существует.\]
\[x = - 3:\]
\[5^{\log_{5}14} = 18 - 4\]
\[4 = 4.\]
\[Ответ:x = - 3.\]