Решебник по алгебре 11 класс Никольский Параграф 8. Уравнения-следствия Задание 23

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 23

\[\boxed{\mathbf{23.}}\]

\[\textbf{а)}\ \left( x + 2\sqrt{x} \right)^{2} - 4x\sqrt{x} = - 3\]

\[x^{2} + 4x\sqrt{x} + 4x - 4x\sqrt{x} + 3 = 0\]

\[x^{2} + 4x + 3 = 0\]

\[D_{1} = 4 - 3 = 1\]

\[x_{1} = - 2 + 1 = - 1;\]

\[x_{2} = - 2 - 1 = - 3.\]

\[x \geq 0:\]

\[корней\ нет.\]

\[Ответ:нет\ решения.\]

\[\textbf{б)}\ \left( x + \sqrt{x} \right)^{2} - 2x\sqrt{x} = 6\]

\[x^{2} + 2x\sqrt{x} + x - 2x\sqrt{x} - 6 = 0\]

\[x^{2} + x - 6 = 0\]

\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 6\]

\[x_{1} = - 3;\ \ \ x_{2} = 2.\]

\[x \geq 0:\]

\[x = - 3 - не\ является\ корнем.\]

\[Ответ:x = 2.\]

\[\textbf{в)}\ \left( x - 2\sqrt{x} \right)^{2} + 4x\sqrt{x} = 5\]

\[x^{2} - 4x\sqrt{x} + 4x + 4x\sqrt{x} - 5 = 0\]

\[x^{2} + 4x - 5 = 0\]

\[D_{1} = 4 + 5 = 9\]

\[x_{1} = - 2 + 3 = 1;\]

\[x_{2} = - 2 - 3 = - 5.\]

\[x \geq 0:\]

\[x = - 5 - не\ является\ корнем.\]

\[Ответ:x = 1.\]

\[\textbf{г)}\ \left( x - \sqrt{x} \right)^{2} + 2x\sqrt{x} = 30\]

\[x^{2} - 2x\sqrt{x} + x + 2x\sqrt{x} - 30 = 0\]

\[x^{2} + x - 30 = 0\]

\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = 30\]

\[x_{1} = - 6;\ \ x_{2} = 5.\]

\[x \geq 0:\]

\[x = - 6 - не\ является\ корнем.\]

\[Ответ:x = 5.\]

Скачать ответ
Есть ошибка? Сообщи нам!