\[\boxed{\mathbf{24.}}\]
\[\textbf{а)}\ tg\frac{\text{πx}}{2} + x^{2} - 7x = tg\frac{\text{πx}}{2} - 6\]
\[x^{2} - 7x + 6 = 0\]
\[x_{1} + x_{2} = 7;\ \ x_{1} \cdot x_{2} = 6\]
\[x_{1} = 1;\ \ x_{2} = 6.\]
\[x = 1:\]
\[\text{tg}\frac{\pi}{2} + 1 - 7 = tg\frac{\pi}{2} - 6\]
\[\text{tg}\frac{\pi}{2} - 6 = tg\frac{\pi}{2} - 6\]
\[tg\ не\ определен\ в\ точке\ \frac{\pi}{2};\]
\[x = 1 - не\ корень.\]
\[x = 6:\]
\[\text{tg}\frac{\pi \cdot 6}{2} + 6^{2} - 7 \cdot 6 =\]
\[= tg\frac{\pi \cdot 6}{2} - 6\]
\[0 + 36 - 45 = 0 - 6\]
\[- 6 = - 6\]
\[x = 6 - корень.\]
\[Ответ:x = 6.\]
\[\textbf{б)}\ ctg\frac{\text{πx}}{3} + x^{2} - 2x =\]
\[= ctg\frac{\text{πx}}{3} + 24\]
\[x^{2} - 2x - 24 = 0\]
\[D_{1} = 1 + 24 = 25\]
\[x_{1} = 1 + 5 = 6;\]
\[x_{2} = 1 - 5 = - 4.\]
\[x = 6:\]
\[\text{ctg}\frac{\pi \cdot 6}{3} + 6^{2} - 2 \cdot 6 =\]
\[= ctg\frac{\pi \cdot 6}{3} + 24\]
\[ctg\ \ не\ определен\ в\ точке\ 2\pi;\]
\[x = 6 - не\ корень.\]
\[x = - 4:\]
\[\text{ctg}\frac{\pi \cdot ( - 4)}{3} + ( - 4)^{2} + 2 \cdot 4 =\]
\[= ctg\frac{\pi \cdot ( - 4)}{3} + 24\]
\[\text{ctg}\frac{- 4\pi}{3} + 24 = ctg\frac{- 4\pi}{3} + 24\]
\[x = - 4 - корень.\]
\[Ответ:x = - 4.\]
\[\textbf{в)}\ x^{2} + 13 + \log_{2}\left( x^{3} - 9 \right) =\]
\[= 8x + \log_{2}\left( 2x^{3} - 18 \right)\text{\ \ }\]
\[x^{2} + 13 + \log_{2}\left( x^{3} - 9 \right) =\]
\[= 8x + \log_{2}{2\left( x^{3} - 9 \right)}\]
\[x^{2} + 13 + \log_{2}\left( x^{3} - 9 \right) =\]
\[= 8x + \log_{2}2 + \log_{2}\left( x^{3} - 9 \right)\]
\[x^{2} + 13 + \log_{2}\left( x^{3} - 9 \right) =\]
\[= 8x + 1 + \log_{2}\left( x^{3} - 9 \right)\]
\[x^{2} - 8x + 12 = 0\]
\[D_{1} = 16 - 12 = 4\]
\[x_{1} = 4 - 2 = 2;\]
\[x_{2} = 4 + 2 = 6.\]
\[Проверка:\]
\[2^{2} + 13 + \log_{2}\left( 2^{3} - 9 \right) =\]
\[= 8 \cdot 2 + \log_{2}\left( 2 \cdot 2^{3} - 18 \right)\]
\[17 + \log_{2}( - 1) = 16 + \log_{2}( - 2)\]
\[a < 0;\]
\[нет\ решения;\]
\[x = 2 - не\ корень.\]
\[6^{2} + 13 + \log_{2}\left( 6^{3} - 9 \right) =\]
\[= 8 \cdot 6 + 1 + \log_{2}\left( 6^{3} - 9 \right)\]
\[49 + \log_{2}\left( 6^{3} - 9 \right) =\]
\[= 49 + \log_{2}\left( 6^{3} - 9 \right)\]
\[x = 6 - корень.\]
\[\textbf{г)}\ x^{2} + 2x + \log_{3}\left( x^{3} + 4 \right) =\]
\[= 23 + \log_{3}\left( 3x^{3} + 12 \right)\]
\[x^{2} + 2x + \log_{3}\left( x^{3} + 4 \right) =\]
\[= 23 + \log_{3}{3\left( x^{3} + 4 \right)}\]
\[x^{2} + 2x + \log_{3}\left( x^{3} + 4 \right) =\]
\[= 23 + \log_{3}3 + \log_{3}\left( x^{3} + 4 \right)\]
\[x^{2} + 2x + \log_{3}\left( x^{3} + 4 \right) =\]
\[= 23 + 1 + \log_{3}\left( x^{3} + 4 \right)\]
\[x^{2} + 2x - 24 = 0\]
\[D_{1} = 1 + 24 = 25\]
\[x_{1} = - 1 + 5 = 4;\]
\[x_{2} = - 1 - 5 = - 6.\]
\[Проверка:\]
\[4^{2} + 2 \cdot 4 + \log_{3}\left( 4^{3} + 4 \right) =\]
\[= 23 + 1 + \log_{3}\left( 4^{3} + 4 \right)\]
\[24 + \log_{3}\left( 4^{3} + 4 \right) =\]
\[= 24 + \log_{3}\left( 4^{3} + 4 \right)\]
\[x = 4 - корень\ уравнения.\]
\[( - 6)^{2} - 2 \cdot 6 + \log_{3}\left( ( - 6)^{3} + 4 \right) =\]
\[= 23 + 1 + \log_{3}\left( ( - 6)^{3} + 4 \right)\]
\[a < 0;\]
\[нет\ решений;\]
\[x = - 6 - не\ корень.\]
\[Ответ:x = 4.\]