\[\boxed{\mathbf{2.}}\]
\[\textbf{а)}\ x = 2;\ \ x^{2} = 4;\]
\[x^{2} = 4\]
\[x = \pm 2.\]
\[Возведение\ уравнения\ в\ \]
\[четную\ степень.\]
\[Посторонний\ корень:\]
\[x = - 2.\]
\[\textbf{б)}\log_{3}x^{2} = \log_{3}x;x^{2} = x;\]
\[x^{2} = x\]
\[x^{2} - x = 0\]
\[x(x - 1) = 0\]
\[x = 0;\ \ x = 1.\]
\[Потенцирование\ \]
\[логарифмического\ уравнения.\]
\[Посторонний\ корень:\]
\[x = 0.\]
\[\textbf{в)}\ \frac{(x - 4) - (2x - 3)}{x^{2} - 1} = 0;\]
\[x \neq - 1\]
\[(x - 4) - (2x - 3) = 0;\]
\[(x - 4) - (2x - 3) = 0\]
\[x - 4 - 2x + 3 = 0\]
\[- x - 1 = 0\]
\[x = - 1.\]
\[Освобождение\ уравнения\]
\[\ от\ знаменателя.\]
\[Посторонний\ корень:\]
\[x = - 1.\]
\[\textbf{г)}\ x^{2} + 3x + \sqrt{x} = \sqrt{x} + 4;\]
\[\text{\ \ }\sqrt{x} \geq 0\]
\[x^{2} + 3x - 4 = 0;\]
\[x^{2} + 3x - 4 = 0\]
\[x_{1} + x_{2} = - 3;\ \ x_{1} \cdot x_{2} = - 4\]
\[x_{1} = - 4;\ \ x_{2} = 1.\]
\[Приведение\ подобных\ членов.\]
\[Посторонний\ корень:\]
\[x = - 4.\]