\[\boxed{\mathbf{4.}}\]
\[\textbf{а)}\cos{2x} - cos^{2}x - \sin x = 0\]
\[\text{co}s^{2}x - sin^{2}x -\]
\[- cos^{2}x - \sin x = 0\]
\[- sin^{2}x - \sin x = 0\]
\[\text{si}n^{2}x + \sin x = 0\]
\[\sin x\left( \sin x + 1 \right) = 0\]
\[1)\sin x = 0\]
\[x = \pi k.\]
\[2)\sin x + 1 = 0\]
\[\sin x = - 1\]
\[x = - \frac{\pi}{2} + 2\pi n.\]
\[\textbf{б)}\ \cos{2x} - cos^{2}x + \sin x = 0\]
\[\text{co}s^{2}x - sin^{2}x - cos^{2}x +\]
\[+ \sin x = 0\]
\[- sin^{2}x + \sin x = 0\]
\[- \sin x\left( \sin x - 1 \right) = 0\]
\[1)\sin x = 0\]
\[x = \pi k.\]
\[2)\sin x - 1 = 0\]
\[\sin x = 1\]
\[x = \frac{\pi}{2} + 2\pi n.\]
\[\textbf{в)}\cos{2x} + cos^{2}x - 0,5 = 0\]
\[2cos^{2}x - 1 + \cos^{2}x - 0,5 = 0\]
\[3\cos^{2}x = 1,5\]
\[\cos^{2}x = 0,5 = \frac{1}{2}\]
\[\cos x = \pm \frac{\sqrt{2}}{2}.\]
\[1)\cos x = \frac{\sqrt{2}}{2}\]
\[x = \pm \frac{\pi}{4} + 2\pi k.\]
\[2)\cos x = - \frac{\sqrt{2}}{2}\]
\[x = \pm \frac{3\pi}{4} + 2\pi k.\]
\[Общее\ решение:\]
\[x = \frac{\pi}{4} + \frac{\text{πk}}{2}.\]
\[\textbf{г)}\cos{2x} - sin^{2}x + 0,5 = 0\]
\[1 - 2sin^{2}x - sin^{2}x + 0,5 = 0\]
\[- 3sin^{2}x = - 1,5\]
\[\text{si}n^{2}x = 0,5 = \frac{1}{2}\]
\[1 - \cos{2x} = 1\]
\[\cos{2x} = 0\]
\[2x = \frac{\pi}{2} + \pi k\ \]
\[x = \frac{\pi}{4} + \frac{\text{πk}}{2}.\]