\[\boxed{\mathbf{5.}}\]
\[\textbf{а)}\ \sqrt[3]{x^{3} + 3x - 15} = x\]
\[x^{3} + 3x - 15 = x^{3}\]
\[3x - 15 = 0\]
\[3x = 15\]
\[x = 5.\]
\[\textbf{б)}\ \sqrt[3]{x^{3} - 3x - 4} = x\]
\[x^{3} - 3x - 4 = x^{3}\]
\[- 3x = 4\]
\[x = - \frac{4}{3}\]
\[x = - 1\frac{1}{3}.\]
\[\textbf{в)}\ \sqrt[3]{x^{3} - 3x - 1} = x - 1\]
\[x^{3} - 3x - 1 = (x - 1)^{3}\]
\[x^{3} - 3x - 1 = x^{3} - 3x^{2} + 3x - 1\]
\[3x^{2} - 6x = 0\]
\[3x(x - 2) = 0\]
\[x = 0;\ \ x = 2.\]
\[\textbf{г)}\ \sqrt[3]{x^{3} - 3x + 1} = x + 1\]
\[x^{3} - 3x + 1 = (x + 1)^{3}\]
\[x^{3} - 3x + 1 = x^{3} + 3x^{2} + 3x + 1\]
\[3x^{2} + 6x = 0\]
\[3x(x + 2) = 0\]
\[x = 0;\ \ x = - 2.\]