Решебник по алгебре 11 класс Никольский Параграф 7. Равносильность уравнений и неравенств Задание 28

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 28

\[\boxed{\mathbf{28.}}\]

\[\textbf{а)}\ \left( \frac{2}{5} \right)^{4 - x} < \left( \frac{5}{2} \right)^{2x + 1}\]

\[\left( \frac{5}{2} \right)^{- (4 - x)} < \left( \frac{5}{2} \right)^{2x + 1}\]

\[\left( \frac{5}{2} \right)^{- 4 + x} < \left( \frac{5}{2} \right)^{2x + 1}\]

\[- 4 + x < 2x + 1\]

\[x - 2x < 1 + 4\]

\[- x < 5\]

\[x > - 5.\]

\[\textbf{б)}\ \left( \frac{2}{7} \right)^{3 - x} < \left( \frac{7}{2} \right)^{3x - 1}\]

\[\left( \frac{7}{2} \right)^{x - 3} < \left( \frac{7}{2} \right)^{3x - 1}\]

\[x - 3 < 3x - 1\]

\[x - 3x < - 1 + 3\]

\[- 2x < 2\]

\[x > - 1.\]

\[\textbf{в)}\ \left( \frac{3}{4} \right)^{1 - 2x} > \left( \frac{4}{3} \right)^{x + 5}\]

\[\left( \frac{4}{3} \right)^{2x - 1} > \left( \frac{4}{3} \right)^{x + 5}\]

\[2x - 1 > x + 5\]

\[2x - x > 5 + 1\]

\[x > 6.\]

\[\textbf{г)}\ \left( \frac{2}{3} \right)^{3x - 7} > \left( \frac{3}{2} \right)^{4x + 1}\]

\[\left( \frac{3}{2} \right)^{7 - 3x} > \left( \frac{3}{2} \right)^{4x + 1}\]

\[7 - 3x > 4x + 1\]

\[- 3x - 4x > 1 - 7\]

\[- 7x > - 6\]

\[x < \frac{6}{7}.\]

Скачать ответ
Есть ошибка? Сообщи нам!