Решебник по алгебре 11 класс Никольский Параграф 7. Равносильность уравнений и неравенств Задание 29

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 29

\[\boxed{\mathbf{29.}}\]

\[\textbf{а)}\ 5^{x - 1} > 4^{x}\]

\[5^{x - 1} > 5^{x \cdot \log_{5}4}\]

\[x - 1 > x \cdot \log_{5}4\]

\[x - x\log_{5}4 > 1\]

\[x\left( 1 - \log_{5}4 \right) > 1\]

\[x > \frac{1}{1 - \log_{5}4}.\]

\[\textbf{б)}\ 4^{x} < 5^{x + 1}\]

\[5^{x\log_{5}4} < 5^{x + 1}\]

\[x\log_{5}4 < x + 1\]

\[x\log_{5}4 - x < 1\]

\[x\left( \log_{5}4 - 1 \right) < 1\]

\[x\left( 1 - \log_{5}4 \right) > - 1\]

\[x > - \frac{1}{1 - \log_{5}4}.\]

\[\textbf{в)}\ 15^{x - 4} < 3^{x - 3}\]

\[(3 \cdot 5)^{x - 4} < 3^{x - 3}\]

\[3^{x - 4} \cdot 5^{x - 4} < 3^{x - 3}\ \ \ |\ :3^{x - 4}\]

\[5^{x - 4} < \frac{3^{x - 3}}{3^{x - 4}}\]

\[5^{x - 4} < 3^{x - 3 - x + 4}\]

\[5^{x - 4} < 3\]

\[5^{x - 4} < 5^{\log_{5}3}\]

\[x - 4 > \log_{5}3\]

\[x > \log_{5}3 + 4.\]

\[\textbf{г)}\ 6^{x + 5} < 3^{x + 6}\]

\[(3 \cdot 2)^{x + 5} < 3^{x + 6}\]

\[3^{x + 5} \cdot 2^{x + 5} < 3^{x + 6}\ \ |\ :(3^{x + 5}\]

\[2^{x + 5} < \frac{3^{x + 6}}{3^{x + 5}}\]

\[2^{x + 5} < 3^{x + 6 - x - 5}\]

\[2^{x + 5} < 3\]

\[2^{x + 5} < 2^{\log_{2}3}\]

\[x + 5 < \log_{2}3\]

\[x < \log_{2}3 - 5.\]

Скачать ответ
Есть ошибка? Сообщи нам!