\[\boxed{\mathbf{27.}}\]
\[\textbf{а)}\ 4^{2x - 7} > 2^{3x + 1}\]
\[\left( 2^{2} \right)^{2x - 7} > 2^{3x + 1}\]
\[2^{4x - 14} > 2^{3x + 1}\]
\[4x - 14 > 3x + 1\]
\[4x - 3x > 1 + 14\]
\[x > 15.\]
\[\textbf{б)}\ 5^{3x - 1} < 25^{x + 1}\]
\[5^{3x - 1} < \left( 5^{2} \right)^{x + 1}\]
\[5^{3x - 1} < 5^{2x + 2}\]
\[3x - 1 < 2x + 2\]
\[3x - 2x < 2 + 1\]
\[x < 3.\]
\[\textbf{в)}\ 7^{5x + 1} < 49^{x - 2}\]
\[7^{5x + 1} < \left( 7^{2} \right)^{x - 2}\]
\[7^{5x + 1} < 7^{2x - 4}\]
\[5x + 1 < 2x - 4\]
\[5x - 2x < - 4 - 1\]
\[3x < - 5\]
\[x < - \frac{5}{3}.\]
\[\textbf{г)}\ 8^{x + 1} > 64^{x}\]
\[8^{x + 1} > \left( 8^{2} \right)^{x}\]
\[8^{x + 1} > 8^{2x}\]
\[x + 1 > 2x\]
\[x - 2x > - 1\]
\[- x > - 1\]
\[x < 1.\]