\[\boxed{\mathbf{26.}}\]
\[\textbf{а)}\ 2^{x + 1} > 2^{x^{2} - 5}\]
\[x + 1 > x^{2} - 5\]
\[x^{2} - x - 6 < 0\]
\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 6\]
\[x_{1} = 3;\ \ x_{2} = - 2.\]
\[(x + 2)(x - 3) < 0\]
\[- 2 < x < 3.\]
\[\textbf{б)}\ (0,3)^{2x + 5} > (0,3)^{x^{2} + 2}\]
\[2x + 5 < x^{2} + 2\]
\[x^{2} - 2x - 3 > 0\]
\[D_{1} = 1 + 3 = 4\]
\[x_{1} = 1 + 2 = 3;\]
\[x_{2} = 1 - 2 = - 1.\]
\[(x + 1)(x - 3) > 0\]
\[x < - 1;\ \ x > 3.\]
\[\textbf{в)}\ 5^{2x - 9} < 5^{x^{2} - 12}\]
\[2x - 9 < x^{2} - 12\]
\[x^{2} - 2x - 3 > 0\]
\[D_{1} = 1 + 3 = 4\]
\[x_{1} = 1 + 2 = 3;\]
\[x_{2} = 1 - 2 = - 1.\]
\[(x + 1)(x - 3) > 0\]
\[x < - 1;\ \ x > 3.\]
\[\textbf{г)}\ (0,5)^{4x - 7} < (0,5)^{x^{2} - 4}\]
\[4x - 7 > x^{2} - 4\]
\[x^{2} - 4x + 3 < 0\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = 2 + 1 = 3;\]
\[x_{2} = 2 - 1 = 1.\]
\[(x - 1)(x - 3) < 0\]
\[1 < x < 3.\]