\[\boxed{\mathbf{25.}}\]
\[\textbf{а)}\ \left( 6\sin^{2}x - 5 \right)^{13} < \left( 2\sin^{2}x - 2 \right)^{13}\]
\[6\sin^{2}x - 5 < 2\sin^{2}x - 2\]
\[4\sin^{2}x < 3\]
\[\sin^{2}x < \frac{3}{4}\]
\[\frac{1 - \cos{2x}}{2} < \frac{3}{4}\]
\[1 - \cos{2x} < \frac{3}{2}\]
\[- \cos{2x} < \frac{1}{2}\]
\[\cos{2x} > - \frac{1}{2}\]
\[\textbf{б)}\ \left( 6\cos^{2}x - 3 \right)^{3} > \left( 2\cos^{2}x - 1 \right)^{3}\]
\[6\cos^{2}x - 3 > 2\cos^{2}x - 1\]
\[4\cos^{2}x > 2\]
\[\cos^{2}x > \frac{1}{2}\]
\[\frac{1 + \cos{2x}}{2} > \frac{1}{2}\]
\[1 + \cos{2x} > 1\]
\[\cos{2x} > 0\]
\[\textbf{в)}\ \left( 2^{x} + 7 \right)^{9} > \left( 3 \cdot 2^{x} + 1 \right)^{9}\]
\[2^{x} + 7 > 3 \cdot 2^{x} + 1\]
\[2 \cdot 2^{x} < 6\]
\[2^{x} < 3\]
\[x < \log_{2}3.\]
\[\textbf{г)}\ \left( 2 \cdot 3^{x} - 1 \right)^{51} < \left( 3^{x} + 8 \right)^{51}\]
\[2 \cdot 3^{x} - 1 < 3^{x} + 8\]
\[3^{x} < 9\]
\[3^{x} < 3^{2}\]
\[x < 2.\]