\[\boxed{\mathbf{93}.}\]
\[T_{0} = 100{^\circ};\ \ T_{1} = 28{^\circ}:\]
\[\frac{\text{dT}}{\text{dt}} = - k(T - 28)\]
\[\frac{d(T - 28)}{\text{dt}} = - k(T - 28).\]
\[\int_{}^{}\frac{d(T - 28)}{\text{dt}} = \int_{}^{}{- k(T - 28)}\]
\[\int_{}^{}\frac{d(T - 28)}{\text{dt}} = - k\int_{}^{}{dt + C}\]
\[\ln|T - 28| = - kt + C\]
\[T - 28 = e^{- kt + C}\]
\[T = 28 + Ae^{- kt}.\]
\[T(0) = 28 + Ae^{- ok} = 100;\]
\[T(12) = 28 + Ae^{- 12k} = 52.\]
\[28 + Ae^{- ok} = 100\]
\[A = 72.\]
\[Подставим:\]
\[28 + Ae^{- 12k} = 52\]
\[28 + 72 \cdot e^{- 12k} = 52\]
\[72e^{- 12k} = 24\]
\[e^{- 12k} = \frac{1}{3}\]
\[e^{- k} = \left( \frac{1}{3} \right)^{\frac{1}{12}}.\]
\[Температура\ через\ 24\ мин:\]
\[T(24) = 28 + Ae^{- 24k} =\]
\[= 28 + 72 \cdot \left( e^{- 12k} \right)^{2} =\]
\[= 28 + 72 \cdot \left( \frac{1}{3} \right)^{2} = 36{^\circ}.\]
\[Ответ:36{^\circ}.\]