\[\boxed{\mathbf{94}.}\]
\[T_{0} = 100{^\circ};\ \ T_{1} = 20{^\circ}:\]
\[\frac{\text{dT}}{\text{dt}} = - k(T - 20)\]
\[\frac{d(T - 20)}{\text{dt}} = - k(T - 20).\]
\[\int_{}^{}\frac{d(T - 20)}{\text{dt}} = \int_{}^{}{- k(T - 20)}\]
\[\int_{}^{}\frac{d(T - 20)}{\text{dt}} = - k\int_{}^{}{dt + C}\]
\[\ln|T - 20| = - kt + C\]
\[T - 20 = e^{- kt + C}\]
\[T = 20 + Ae^{- kt}.\]
\[T(0) = 20 + Ae^{- ok} = 100;\]
\[T(12) = 20 + Ae^{- 10k} = 60.\]
\[20 + Ae^{- ok} = 100\]
\[A = 80.\]
\[Подставим:\]
\[20 + Ae^{- 10k} = 60\]
\[20 + 80 \cdot e^{- 10k} = 60\]
\[80e^{- 10k} = 40\]
\[e^{- 10k} = \frac{1}{2}\]
\[e^{- k} = \left( \frac{1}{2} \right)^{\frac{1}{10}}.\]
\[Время,\ через\ которое\ самовар\ \]
\[остынет\ до\ 30{^\circ}:\]
\[T(t) = 20 + 80 \cdot e^{- tk} = 30\]
\[80e^{- tk} = 10\]
\[80 \cdot \left( \frac{1}{2}^{0,1} \right)^{t} = 10\]
\[\left( \frac{1}{2}^{0,1} \right)^{t} = \frac{1}{8}\]
\[\left( \frac{1}{2}^{0,1} \right)^{t} = \left( \frac{1}{2} \right)^{3}\]
\[0,1t = 3\]
\[t = 30\ (с).\]
\[Ответ:через\ 30\ с.\]