\[\boxed{\mathbf{73}.}\]
\[\textbf{а)}\ \int_{0}^{\frac{\pi}{2}}{\cos{2x}\text{dx}};\]
\[u = 2x;\ \ x = \frac{u}{2};\]
\[dx = d\left( \frac{u}{2} \right) = \frac{1}{2}du;\]
\[x = 0 \rightarrow u = 0;\]
\[x = \frac{\pi}{2} \rightarrow u = 2 \cdot \frac{\pi}{2} = \pi;\]
\[\int_{0}^{\pi}{\cos u\frac{1}{2}\text{du}} = \frac{1}{2}\int_{0}^{\pi}{\cos u\text{du}} =\]
\[= \frac{1}{2}\left( F(\pi) - F(0) \right) =\]
\[= \frac{1}{2}\left( \sin\pi - \sin 0 \right) =\]
\[= \frac{1}{2}(0 - 0) = 0.\]
\[\textbf{б)}\ \int_{0}^{\pi}{\sin\frac{x}{3}\text{dx}};\]
\[u = \frac{x}{3};\ \ x = 3u;\]
\[dx = d \cdot (3u) = 3du;\]
\[x = 0 \rightarrow u = \frac{0}{3} = 0;\]
\[x = \pi \rightarrow u = \frac{\pi}{3};\]
\[\int_{0}^{\frac{\pi}{3}}{\sin u3du} = 3\int_{0}^{\frac{\pi}{3}}{\sin u\text{du}} =\]
\[= 3\left( F\left( \frac{\pi}{3} \right) - F(0) \right) =\]
\[= 3\left( - \cos\frac{\pi}{3} + \cos 0 \right) =\]
\[= 3 \cdot \left( - \frac{1}{2} + 1 \right) = \frac{3}{2} = 1,5.\]
\[\textbf{в)}\ \int_{- 1}^{1}{\sqrt{1 - x^{2}}\text{dx}};\]
\[x = \sin u;u = \arcsin x;\]
\[dx = d\left( \sin u \right) = \cos udu;\]
\[x = - 1 \rightarrow u = \arcsin( - 1) =\]
\[= - \frac{\pi}{2};\]
\[x = 1 \rightarrow u = \arcsin 1 = \frac{\pi}{2};\]
\[\int_{- 1}^{1}{\sqrt{1 - x^{2}}\text{dx}} = \int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}{\text{co}s^{2}\text{u\ du}} =\]
\[= \int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}{\frac{1 + \cos{2u}}{2}\text{du}} =\]
\[\textbf{г)}\ \int_{0}^{2}{\sqrt{4 - x^{2}}\text{dx}};\]
\[x = 2\sin u;\]
\[u = \arcsin\frac{x}{2};\]
\[dx = 2\cos udu;\]
\[x = 0 \rightarrow u = \arcsin 0 = 0;\]
\[x = 2 \rightarrow u = \arcsin\frac{2}{2} =\]
\[= \arcsin 1 = \frac{\pi}{2};\]
\[\int_{0}^{2}{\sqrt{4 - x^{2}}\text{dx}} =\]
\[= \int_{0}^{\frac{\pi}{2}}{\sqrt{4 - 4sin^{2}u} \cdot 2\cos u\text{du}} =\]
\[= \int_{0}^{\frac{\pi}{2}}{2\sqrt{1 - sin^{2}u} \cdot 2\cos u\text{du}} =\]
\[= \int_{0}^{\frac{\pi}{2}}{4\cos^{2}u\text{du}} =\]
\[= \int_{0}^{\frac{\pi}{2}}{4 \cdot \frac{1 + \cos{2u}}{2}\text{du}} =\]
\[= \int_{0}^{\frac{\pi}{2}}{2 \cdot \left( 1 + \cos{2u} \right)\text{du}} =\]
\[= 2 \cdot \int_{0}^{\frac{\pi}{2}}{\left( 1 + \cos{2u} \right)\text{du}} =\]
\[= 2 \cdot \left( \frac{\pi}{2} + 0 \right) = \pi.\]
\[\textbf{д)}\ \int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\text{dx}}{4 + x^{2}};\]
\[x = 2u;\ \]
\[dx = 2du;\]
\[\int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\text{dx}}{4 + x^{2}} = \int_{- \frac{\pi}{4}}^{\frac{\pi}{4}}\frac{2du}{4 + 4u^{2}} =\]
\[= \frac{1}{2}\int_{- \frac{\pi}{4}}^{\frac{\pi}{4}}\frac{\text{du}}{1 + u^{2}} = \left. \ \frac{1}{2}\text{artg\ u} \right|_{- \frac{\pi}{4}}^{\frac{\pi}{4}} =\]
\[= \frac{1}{2}\text{artg\ }\frac{\pi}{4} - \frac{1}{2}\text{artg}\left( - \frac{\pi}{4} \right) =\]
\[= artg\ \frac{\pi}{4}.\]
\[\textbf{е)}\ \int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\text{dx}}{\sqrt{9 - x^{2}}};\]
\[x = 3\sin u;\ \]
\[u = \arcsin\frac{x}{3};\]
\[dx = 3\cos udu;\]
\[x = - \frac{\pi}{2} \rightarrow u = \arcsin\left( - \frac{\pi}{6} \right) =\]
\[= - \arcsin\frac{\pi}{6};\]
\[x = \frac{\pi}{2} \rightarrow u = \arcsin\frac{\pi}{6};\]
\[\int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\text{dx}}{\sqrt{9 - x^{2}}} =\]
\[= \int_{- \arcsin\frac{\pi}{6}}^{\arcsin\frac{\pi}{6}}\frac{3\cos u\text{du}}{\sqrt{9 - 9sin^{2}u}} =\]
\[= \int_{- \arcsin\frac{\pi}{6}}^{\arcsin\frac{\pi}{6}}\frac{3\cos u\text{du}}{3\sqrt{1 - sin^{2}u}} =\]
\[= \int_{- \arcsin\frac{\pi}{6}}^{\arcsin\frac{\pi}{6}}\frac{\cos u\text{du}}{\cos u} =\]
\[= \int_{- \arcsin\frac{\pi}{6}}^{\arcsin\frac{\pi}{6}}{1du} =\]
\[= \arcsin\frac{\pi}{6} - \left( - \arcsin\frac{\pi}{6} \right) =\]
\[= 2\arcsin\frac{\pi}{6}.\]