\[\boxed{\mathbf{72}.}\]
\[\textbf{а)}\ y = 4 + 0,5x^{2};\]
\[y = 2x + 2;\]
\[x = 0;\ \ x = 3.\]
\[4 + 0,5x^{2} = 2x + 2\]
\[0,5x^{2} - 2x + 2 = 0\ \ \ | \cdot 2\]
\[x^{2} - 4x + 4 = 0\]
\[(x - 2)^{2} = 0\]
\[x = 2.\]
\[При\ x \neq 2:\]
\[4 + 0,5x^{2} - 2x - 2 =\]
\[= 0,5(x - 2)^{2} \geq 0\]
\[точки\ параболы\ находятся\ \]
\[выше\ точек\ прямой.\]
\[= \int_{0}^{3}{\left( 0,5x^{2} - 2x + 2 \right)\text{dx}} =\]
\[= \left. \ \frac{x^{3}}{6} - x^{2} + 2x \right|_{0}^{3} =\]
\[= \left( \frac{27}{6} - 9 + 6 \right) - 0 = 1,5\ кв.\ ед.\]
\[Ответ:1,5\ кв.\ ед.\]
\[\textbf{б)}\ y = 8 - 0,5x^{2};\ \]
\[y = 2x + 10;\]
\[x = 0;x = - 3;\]
\[2x + 10 = 8 - 0,5x^{2}\]
\[0,5x^{2} + 2x + 2 = 0\ \ | \cdot 2\]
\[x^{2} + 4x + 4 = 0\]
\[(x + 2)^{2} = 0\]
\[x = - 2.\]
\[При\ x \neq - 2:\]
\[точки\ параболы\ находятся\ \]
\[ниже\ точек\ прямой.\]
\[= \int_{- 3}^{0}{\left( 0,5x^{2} + 2x + 2 \right)\text{dx}} =\]
\[= \left. \ \frac{x^{3}}{6} + x^{2} + 2x \right|_{- 3}^{0} =\]
\[= 0 - \left( - \frac{27}{6} + 9 - 6 \right) =\]
\[= 1,5\ кв.\ ед.\]
\[Ответ:1,5\ кв.\ ед.\]