\[\boxed{\mathbf{30}.}\]
\[\ y = x^{2};\ \ \lbrack 0;1\rbrack;\]
\[S_{n} = \frac{1^{2} + 2^{2} + \ldots + (n - 1)^{2}}{n^{3}}\]
\[\textbf{а)}\ 1^{2} + 2^{2} + \ldots + n^{2} =\]
\[= \frac{n(n + 1)(2n + 1)}{6}\]
\[S_{n} = \frac{(n - 1)(2n - 1)}{6n^{2}}.\]
\[\textbf{б)}\ S_{n} = \frac{(n - 1)(2n - 1)}{6n^{2}};\]
\[\lim_{n \rightarrow \infty}S_{n} = \lim_{n \rightarrow \infty}\frac{2n^{2} - 3n + 1}{6n^{2}} =\]
\[= \lim_{n \rightarrow \infty}\frac{2n^{2}}{6n^{2}} - \lim_{n \rightarrow \infty}\frac{3n}{6n^{2}} + \lim_{n \rightarrow \infty}\frac{1}{6n^{2}} =\]
\[= \frac{2}{6} = \frac{1}{3}.\]
\[Да,\ существует.\]
\[\textbf{в)}\ y = 0;\ \ x = 1.\]
\[\lim_{n \rightarrow \infty}S_{n} = \frac{1}{3}.\]
\[Площадь\ фигуры\ и\ есть\ \]
\[предел\ интегральной\ суммы:\]
\[S_{фигуры} = \frac{1}{3}.\]