\[\boxed{\mathbf{27}.}\]
\[\textbf{а)}\ S_{1} = f( - 0) \cdot \frac{1}{1} = 0 \cdot 1 = 0;\]
\[S_{2} = \left( 0 + \frac{1}{2} \right) \cdot \frac{1}{2} = \frac{1}{4};\]
\[S_{3} = \left( 0 + \frac{1}{3} + \frac{2}{3} \right) \cdot \frac{1}{3} = \frac{1}{3};\]
\[S_{4} = \left( 0 + \frac{1}{4} + \frac{2}{4} + \frac{3}{4} \right) \cdot \frac{1}{4} =\]
\[= \frac{6}{4} \cdot \frac{1}{4} = \frac{3}{8}.\]
\[\textbf{б)}\ S_{n} = \left( \frac{0 + \frac{n - 1}{n}}{2} \cdot n \right) \cdot \frac{1}{n} =\]
\[= \frac{n - 1}{2n} \cdot n \cdot \frac{1}{n} = \frac{n - 1}{2n}.\]
\[\textbf{в)}\ \lim_{n \rightarrow \infty}S_{n} = \lim_{n \rightarrow \infty}\left( \frac{1}{2} - \frac{1}{2n} \right) = \frac{1}{2}.\]
\[Последовательность\ \]
\[интегральных\ сумм\ имеет\ \]
\[предел\ при\ n \rightarrow \infty:\]
\[\lim_{n \rightarrow \infty}S_{n} = \frac{1}{2}.\]
\[\textbf{г)}\ y = x;\ \ x = 1;\ y = 0:\]
\[S = \frac{1}{2} \cdot (1 \cdot 1) = \frac{1}{2}.\]