\[\boxed{\mathbf{99}\mathbf{.}}\]
\[\textbf{а)}\ Пусть\ x\ (x > 0) - сторона\ \]
\[квадрата\ в\ основании;\]
\[V = 32.\]
\[V = h \cdot S_{осн} = h \cdot x^{2}\]
\[h = \frac{V}{x^{2}} = \frac{32}{x^{2}} - высота.\]
\[S_{пов} = x^{2} + 4x \cdot \frac{4}{x^{2}} = x^{2} + \frac{16}{x};\]
\[S_{пов}^{'} = 2x - \frac{16}{x^{2}} = \frac{2x^{3} - 16}{x^{2}};\]
\[\frac{2x^{3} - 16}{x^{2}} = 0\]
\[2x^{3} - 16 = 0\]
\[x^{3} = 8\]
\[x = 2 - ширина\ бака.\]
\[h = \frac{4}{x^{2}} = \frac{4}{4} = 1 - высота\ бака.\]
\[Ответ:2\ и\ 1.\]
\[\textbf{б)}\ Пусть\ x\ (x > 0) - сторона\]
\[\ квадрата\ в\ основании;\]
\[V = 32.\]
\[V = h \cdot S_{осн} = h \cdot x^{2}\]
\[h = \frac{V}{x^{2}} = \frac{32}{x^{2}} - высота.\]
\[S_{пов} = x^{2} + 4x \cdot \frac{32}{x^{2}} = x^{2} + \frac{128}{x};\]
\[S_{пов}^{'} = 2x - \frac{128}{x^{2}} = \frac{2x^{3} - 128}{x^{2}};\]
\[\frac{2x^{3} - 128}{x^{2}} = 0\]
\[2x^{3} - 128 = 0\]
\[x^{3} = 64\]
\[x = 4 - ширина\ бака.\]
\[h = \frac{32}{x^{2}} = \frac{32}{16} = 2 - высота\ бака.\]
\[Ответ:4\ и\ 2.\]