\[\boxed{\mathbf{100}\mathbf{.}}\]
\[Объем\ цилиндра:\]
\[V = \pi R^{2}h = \pi \cdot \frac{d^{2}}{4}\text{h.}\]
\[Пусть\ x > 0 - диаметр;\]
\[h = \frac{4V}{\pi d^{2}} = \frac{4V}{\pi x^{2}} - высота.\]
\[S_{пов} = 2S_{осн} + S_{бок} = 2\pi кр +\]
\[+ 2\pi r^{2} = 2\pi\left( rh + r^{2} \right) =\]
\[= 2\pi\left( \frac{x}{2} \cdot \frac{4V}{\pi x^{2}} + \frac{x^{2}}{4} \right) =\]
\[= 2\pi\left( \frac{2V}{\text{πx}} + \frac{x^{2}}{4} \right) = \frac{4\pi V}{\text{πx}} +\]
\[+ \frac{2\pi x^{2}}{4} = \frac{4V}{x} + \frac{\pi x^{2}}{2};\]
\[S_{пов} = - \frac{4V}{x^{2}} + \frac{2\text{πx}}{2} = - \frac{4V}{x^{2}} + \pi x.\]
\[- \frac{4V}{x^{2}} + \pi x = 0\]
\[\frac{- 4V + \pi x^{3}}{x^{2}} = 0\]
\[- 4V + \pi x^{3} = 0\]
\[x = \sqrt[3]{\frac{4V}{\pi}} - диаметр\ цилиндра.\]
\[S_{пов}^{''} = \frac{4V}{x^{2}} + \pi > 0:\]
\[x = \sqrt[3]{\frac{4V}{\pi}} - точка\ минимума.\]
\[h = \frac{4V}{\pi x^{2}} = \frac{4V}{\pi\left( \sqrt[3]{\frac{4V}{\pi}} \right)^{2}} = \sqrt[3]{\frac{4V}{\pi}}.\]
\[Ответ:диаметр\ и\ высота\ \]
\[равны\ \sqrt[3]{\frac{4V}{\pi}}.\]