\[\boxed{\mathbf{97}\mathbf{.}}\]
\[Основание:квадрат;\]
\[d = 3\sqrt{3};\]
\[h \in \lbrack 1,5;3,5\rbrack - высота.\]
\[Рисунок\ к\ задаче:\]
\[Пусть\ a - сторона\ квадрата\]
\[\ в\ основании.\]
\[V = abh = a \cdot a \cdot h = a^{2}\text{h.}\]
\[По\ теореме\ Пифагора:\]
\[a^{2} + a^{2} + h^{2} = \left( 3\sqrt{3} \right)^{2}\]
\[2a^{2} + h^{2} = 27\]
\[a^{2} = \frac{27 - h^{2}}{2}.\]
\[Подставим:\]
\[V = \frac{27 - h^{2}}{2} \cdot h;\]
\[V^{'} = \frac{1}{2}\left( 27 - 3h^{2} \right);\]
\[\frac{1}{2}\left( 27 - 3h^{2} \right) = 0\]
\[27 - 3h^{2} = 0\]
\[3h^{2} = 27\]
\[h^{2} = 9\]
\[h = \pm 3.\]
\[1,5 \leq h \leq 3,5:\]
\[h = 3 - точка\ максимума.\]
\[a^{2} = \frac{27 - 3^{2}}{2} = \frac{18}{2} = 9\]
\[a = 3.\]
\[Ответ:куб\ с\ ребром\ 3.\]