\[\boxed{\mathbf{96}\mathbf{.}}\]
\[Рисунок\ к\ задаче:129.\]
\[d - диаметр\ бревна;\]
\[a - ширина\ основания\ \]
\[прямоугольной\ балки;\]
\[h - высота\ прямоугольной\ \]
\[балки;\]
\[прочность\ балки\]
\[\ пропорциональна\ ah^{2}.\]
\[По\ теореме\ Пифагора:\]
\[d^{2} = a^{2} + h^{2}\]
\[h^{2} = d^{2} - a^{2}\]
\[h = \sqrt{d^{2} - a^{2}}.\]
\[y = k \cdot ah^{2} = ka\left( \sqrt{d^{2} - a^{2}} \right)^{2} =\]
\[= ka\left( d^{2} - a^{2} \right);\]
\[y^{'} = kd^{2} - 3ka^{2};\]
\[kd^{2} - 3ka^{2} = 0\]
\[d^{2} - 3a^{2} = 0\]
\[a^{2} = \frac{1}{3}d^{2}\]
\[a = \pm \frac{d\sqrt{3}}{3}.\]
\[0 < a < d:\]
\[a = \frac{d\sqrt{3}}{3} - точка\ максимума.\]
\[h = \sqrt{d^{2} - a^{2}} =\]
\[= \sqrt{d^{2} - \left( \frac{d\sqrt{3}}{3} \right)^{2}} =\]
\[= \sqrt{d^{2} - \frac{3d^{2}}{9}} = \frac{d\sqrt{6}}{3}.\]
\[Ответ:при\ a = \frac{d\sqrt{3}}{3};\ \ h = \frac{d\sqrt{6}}{3}.\]