\[\boxed{\mathbf{94}\mathbf{.}}\]
\[\textbf{а)}\ Пусть\ c - гипотенуза;\]
\[x - один\ катет;\]
\[\sqrt{c^{2} - x^{2}} - второй\ катет;\]
\[S = \frac{1}{2}x\sqrt{c^{2} - x^{2}};\ \ x > 0;\ \ c > x.\]
\[S^{'} = \frac{1}{2}x^{'}\sqrt{c^{2} - x^{2}} +\]
\[+ \frac{1}{2}x\left( \sqrt{c^{2} - x^{2}} \right)^{'} =\]
\[= \frac{1}{2}\left( \sqrt{c^{2} - x^{2}} + x \cdot \frac{- 2x}{2\sqrt{c^{2} - x^{2}}} \right) =\]
\[= \frac{1}{2}\left( \sqrt{c^{2} - x^{2}} - \frac{x^{2}}{\sqrt{c^{2} - x^{2}}} \right) =\]
\[= \frac{1}{2}\left( \frac{c^{2} - x^{2} - x^{2}}{\sqrt{c^{2} - x^{2}}} \right) =\]
\[= \frac{1}{2} \cdot \frac{c^{2} - 2x^{2}}{\sqrt{c^{2} - x^{2}}};\]
\[\frac{1}{2} \cdot \frac{c^{2} - 2x^{2}}{\sqrt{c^{2} - x^{2}}} = 0\]
\[c^{2} - 2x^{2} = 0\]
\[2x^{2} = c^{2}\]
\[x = \frac{c}{\sqrt{2}} - точка\ максимума.\]
\[S_{\max} = \frac{1}{2} \cdot \frac{c}{\sqrt{2}} \cdot \sqrt{c^{2} - \frac{c^{2}}{2}} =\]
\[= \frac{c}{2\sqrt{2}} \cdot \frac{c}{\sqrt{2}} = \frac{c^{2}}{4}.\]
\[Ответ:наибольшая\ площадь\]
\[\ треугольника\ равна\ \frac{c}{\sqrt{2}}.\]
\[\textbf{б)}\ Прямоугольник\ имеет\ \]
\[большую\ площадь,\ если\ \]
\[он\ квадрат.\]
\[Пусть\ x - одна\ сторона;\]
\[\sqrt{d^{2} - x^{2}} - другая\ сторона;\]
\[S = x\sqrt{d^{2} - x^{2}};\ \ x > 0;\ \ d > x.\]
\[S^{'} = x^{'\sqrt{d^{2} - x^{2}}} + x\left( \sqrt{d^{2} - x^{2}} \right)^{'} =\]
\[= \sqrt{d^{2} - x^{2}} + x \cdot \frac{- 2x}{2\sqrt{d^{2} - x^{2}}} =\]
\[= \sqrt{d^{2} - x^{2}} - \frac{x^{2}}{\sqrt{d^{2} - x^{2}}} =\]
\[= \frac{d^{2} - x^{2} - x^{2}}{\sqrt{d^{2} - x^{2}}} = \frac{d^{2} - 2x^{2}}{\sqrt{d^{2} - x^{2}}};\]
\[\frac{d^{2} - 2x^{2}}{\sqrt{d^{2} - x^{2}}} = 0\]
\[d^{2} - 2x^{2} = 0\]
\[2x^{2} = d^{2}\]
\[x = \frac{d}{\sqrt{2}} - точка\ максимума.\]
\[S_{\max} = \frac{d}{\sqrt{2}} \cdot \sqrt{d^{2} - \frac{d^{2}}{2}} =\]
\[= \frac{d}{2\sqrt{2}} \cdot \frac{d}{\sqrt{2}} = \frac{d^{2}}{2}.\]
\[\sqrt{d^{2} - \frac{d^{2}}{2}} = \frac{d}{\sqrt{2}} - стороны\]
\[\ равны;\]
\[прямоугольник - квадрат.\]
\[Ответ:наибольшая\ площадь\ у\]
\[\ квадрата\ со\ стороной\ \frac{d}{\sqrt{2}}.\]